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A STRACT15
This thesis presents a study of the dynamic interaction which

takes place between the magnetospheric plasma and the underlying

neutral atmosphere; it is hoped thus to gain a better understanding

of the effects of this interaction upon the steady state configuration

of the magnetosphere.

The neutral portion of the atmosphere (the neutrosphere) and the

overlying ionized regions (the upper atmosphere and magnetosphere)

may be regarded as two distinct dynamic domains that interact in a

region of transition occurring between i00 and 150 km over the earth.

The neutrosphere because of its greater mass will dominate the motion,

and the magnetospheric plasma can be expected to undergo motions

related to those of the upper neutrosphere and transition region.

However, the geomagnetic field restricts the motion of the magneto-

spheric plasma to a particular class, allowing one to consider the

magnetospheric motion to be constrained.

Motions in the transition region of the class not permitted the

magnetospheric plasma will give rise to forces against the constraint.

The reaction of the constraint on the atmosphere of the transition

region takes the form of a Lorentz force J x B where J is the current

responsible for the well known solar quiet day daily magnetic variation

(Sq). The explanation for the production of this current in the transi-

tion region has traditionally been presented in terms of a dynamo-like

electromotive force generated by motions of the conducting atmosphere

through the magnetic field, w|lei_ee the transition region is aptly named

the dynamo region.
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The Lorentz force represented by this current constitutes a

significant term in the equation of motion for the dynamo region.

Another important term arises from eddy viscous stresses immediately

below the dynamo region. The equation of motion for the dynamo region

must thus include such forces as well as the pressure gradient and

Coriolis terms. However, our almost total ignorance of the eddy viscous

stress field at the lower surface of the dynamo layer at present precludes

our deducing the entire dynamo layer winds from the observed Sq magnetic

variation.

The kinematics of the dynamo layer are discussed and the motion of

the dynamo layer is divided into a symmetric and an antisymmetric part.

The term symmetric is here used to describe winds in the northern and

southern hemisphere that are the mirror images of each other with respect

to the equatorial plane. It is demonstrated that the symmetric component

gives rise to electrostatic fields transverse to the field lines, but

to no currents along the field lines, while the antisymmetric case

produces the converse effects. The symmetric and antisymmetric winds

are further divided into components according to the horizontal

electromotive force they produce.

(a) Symmetric Wind

In the case of the symmetric wind, only the portion of the wind

producing the solenoidal component of the horizontal dynamo electro-

motive force is effective in producing ionospheric currents. It is

demonstrated that only this current producing wind system acts against

the constraints imposed by the geomagnetic field on magnetospheric

motions. The motion of the magnetospheric plasma driven by each such

wind system is discussed.
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The earlier treatments of the dynamo theory consider the dynamo

region to be a single layer in which the wind system and the electric

conductivity are assumed to be uniform in height. A new, more general

derivation of the layer's dynamo action is given in which no restrictions

are placed upon the vertical distributions. An effective wind is defined

which permits the use of the earlier equations relating the current

function, the electrostatic field, and the scalar field describinE the

current producing part of the effective wind. The equation relating the

electrostatic field and the current function is essentially that

employed by Maeda (1956), allowing his solution for the portion of the

electrostatic field associated with the current producing wind to remain

unaffected by the stratification of the wind system.

Mathematical techniques for solving the dynamo equations for the

elecrostatic field are developed. These allow for a quite general conduc-

tivity distribution over the globe, only requiring that it be expressible

in surface harmonics. The effect of undetected zonal currents upon the

solution for the electrostatic field is discussed. It is suggested that

a considerable diurnal component of electrostatic field and other com-

ponents as well may be hidden from us by our inability to detect the

prevailing magnetic perturbations produced by zonal currents. The

electrostatic field associated with the non-current producing components

of the symmetric wind is likewise hidden from us,

(b) Antisymmetric Wind

The equations fom the cumrent driven by the antisymmetric component

of wind are derived, and some of the effects of such currents are dis-

cussed. It is found theft t2_e e_ucti_n of _ar_e_,t alc_ z the field lines
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from one hemisphere to the other is associated with an interhemispheric

stress between geomagnetically conjugate points of order 3 x 10 -7

newtons/meter 2,

In addition it is found that an antisymmetric layer current density

of 5 amperes/km into the polar cap region (across the 75° latitude

circle) might give rise to a displacement of about 150 km in the

relative position of the conjugate points defined by field lines of the

magnetospheric tail.

It is sug6ested that the dynamo action in the i00 to 150 km height

plays a role in determining the manner in which the magnetosphere

divides itself into the corotating region and the magnetospheric tail.
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CHAPTER 1

INTRODUCTION

i.I Two Dynamic Domains

From the dynamic point of view, the earth's atmosphere may be divided

into two domains. The first, called the neutrosphere, comprises the neu-

tral atmosphere from ground level to about i00 km. It is the region

where the motions of the atmospheme are governed by the ordinaz,y hydro-

dynamic equations employed in meteoroloz=y. The second extends upwards

from about 150 km to include most of the region in space that is affected

by the presence of the earth, a volume that has been estimated to be of

g_eater order than two thousand times that of the solid earth itself.

In this domain the dynamic equations are dominated by the electromagnetic

terms, and indeed it has been given the name 'magnetosphere' by Gold (1959)

just because the region is so much characterized by the presence of the

earth's magnetic field.

The range of altitudes separating the two domains is a region of

transition. Here, as will later be shown, the equation of motion must

include electromagnetic terms along with the hydrodynamic terms, causing

the dynamics of this particular region to be more difficult to understand

than for either the magnetosphere or the neutrosphere. This is the region

of accommodation between the magnetically governed motions of the mag-

netosphere and the less restricted motions of the neutrosphere. Such

accommodation, associated with a boundary condition for each domain, can

be expected to involve a transfer of momentum from one domain to the

other through the transition region. The momentum transfer, when viewed
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micmoscopically, comesabout through the accelemation of charged particles

by the electric fields and the subsequent collisions between the neutral

particles and electrically charged particles co-existing in the transi-

tion region. In section 1.4 we shall see that macroscopically, the trans-

fer of momentum from one layer to another may be considered in the form

of a Lorentz force F,

F = J x B , (i.i)

acting on the partially ionized gas in a particulam layer. Because of

the relatively small mass of the magnetosphere, such a force will quickly

accelerate the magnetospheric material to the velocity of the neutral

atmosphere insofar as such motion is permitted by the hydromagnetic

equations of motion.

1.2 Constraints on Magnetospheric Motions

The fact that certain classes of motion ape not permitted in the

magnetosphere is manifested by the continued existence of the Sq current

system, which we will find represents the force of the neutral atmosphere

acting against the constraints placed on magnetospheric motion by the

magnetic field. It is worthwhile considering for a moment the nature of

the constraints.

Because of the high conductivity in the magnetosphere, the magnetic

field can be said to be frozen into the plasma. This can be simply

stated to mean that the time variations of the magnetic field and the

motions of the plasma must take place in such a way that the total magnetic

flux remains constant through a surface defined by the particles, regard-

less of how the surface is deformed and translated in the course of the
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fluid's motion. In someapplications, such as to gaseous nebulae and the

interplanetary magnetic field, this idea is interpreted to mean that the

magnetic field is camried about with the motions of the highly conducting

plasma. This greatly simplifies many of the discussions by permittlnK

the time variation of the magnetic field and the motion of the plasma to

be treated together. In oum discussion, however, the magnetic field is

found to be also frozen into another nearby, but thus far unmentioned

dynamic domain, the solid earth. Because of the latter's proximity, rig-

idity, and high conductivity, the time variations of the magnetic field

in the transition region between the magnetosphere and the neutrosphere

are small enough to be treated as perturbations. Because the magnetic

field is, to good approximation, held constant by the solid earth, the

motions of the maKnetospheric plasma are restricted to a class which can

take place without producing a redistribution of the magnetic field.

Specifically, if the motions are considered to be horizontal, it will be

shown in Chapter 2 that the magnetospheric velocity just above the tran-

sition region must be represented by the two dimensional vector field

_M = 1 x 1-r vs (2.1)
r

where 1 is the unit radial vector, B is the radial component of the
--r r

magnetic field and S is a scalar field, the electrostatic potential. This

class of motions is closely _elated to the non-uniform isorotation first

discussed by Ferraro (1937) and the more general class of motions

ExB

- B2 (2.2)
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in which no magnetic work is done, as discussed by Gold (1959). Insofar

as we are able to assume the earth's magnetic field to be relatively un-

perturbed during the motion, a condition which may not prevail at great

distances where the magnetic field becomes small, the motions must take

place in such a way that all the plasma along a particular magnetic field

line moves together to simultaneously occupy the positions of other mag-

netic field lines. Since we will be genemally concerned only with steady

state situations we will indeed be able to consider this last to be the

case. If, however, non-steady states are considered, the plasma along a

given field line will continue to occupy common field lines in the course

of their motion, but now the field lines must also be considered to move

about.

The two conditions just discussed, that requiring the horizontal

motion _M of the magnetospheric plasma to obey equation (2.1) and the

othe_ requiring all the plasma along a field line to convect as a whole

to the position of other field lines, constitute the earlier mentioned

constraints on the motion of the magnetospheric material. We find there

are two situations in which the forces exerted by the neutrosphere will

be directed against these constraints. Firstly, any force tending to

produce a magnetospheric motion of the class

, 1
- B VY (2.3)

r

acts against the constraint imposed by the difficulty of redistributing

the magnetic field in the proximity of the highly conducting solid earth.

Secondly, forces oppositely directed in the two hemispheres will act

against the constraint that requires all the plasma along a field line



to moveconcordantly from one field line to another. Forces of both

these kinds occur in the transition region and manifest themselves by

producing perturbations of the magnetic field of the kind usually desig-

nated Sq. We will find that magnetic perturbations that can be repre-

sented by symmetric current systems (i.e., current systems which are mirror

images in the equatorial plane; for further discussion see section 2._)

arise from forces acting against the first constraint, while perturbations

that are represented by antisymmetric current systems arise from forces

acting against the second, or concordant motion, constraint.

1.3 Ionospheric Damping of Relative Motion Between the Magnetosphere and

the Neutrosphere

A force acting against the constraints on magnetospheric motion can

arise in yet another way. If in some manner a force can be exerted directly

on the magnetospheric plasma, it will be transmitted to the transition

region, and subsequently to the neutrosphere. Obviously if the force tends

to produce a motion requiring a redistribution of the magnetic flux over

the earth, it acts against the first constraint. However, even in the

case where the resulting motion of the magnetosphere would be of the class

permitted from the point of view of magnetic flux distribution, the ionized

material in the transition region will be prevented from reaching a veloc-

ity concordant with that of the magnetospheric plasma because of numerous

collisions with the neutral particles, which because of their relatively

great number and correspondingly large aggregate mass, do not readily

accelerate to the velocity of the magnetosphere. Said otherwise, motion

having its origin in the magnetosphere will be damped in the transition

region, and consequently exists only with the continued action of a driving

force. This may be illustrated, following Cole (1963) as follows.
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Suppose the ionosphere is initially at rest and the magnetosphere is

moving with velocity _E given by

-vs,zEx£ = o (3.l)

and that no external forces are applied to the system. The electric

field E = -VS accompanying the magnetospheric motion is transmitted along

the highly conductive field lines to the transition region where it pro-

duces an electric current of density J. The current gives rise to Joule

heating of the transition region and to an acceleration by the Lorentz

force _ x _, both effects tending to deplete the kinetic energy of the

magnetospheric plasma. An energy equation describing this effect may be

written

2 2 fat _ PMvE dVM _'_ _ _T VT dVT - °l I -VS + V_Tx £1 2 dV T (3.2)

where p is the gas density, dV is an element of volume, aI is the Pedersen

conductivity in the transition region,and the subscripts M and T refer to

the magnetosphere and transition region (although_E is written rather

than _M ). The three integrals represent the kinetic energy of the mag-

netosphere, that of the transition region, and the Joule dissipation in

the transition region, respectively. The Joule dissipation term is similar

to friction in its chaPactem, causing the relative motion between the mag-

netosphere and the transition region to tend irreversibly to zero unless

a driving force is maintained on one or the other.

The large mass of the transition region places an upper limit on

VT, fop suppose that all the kinetic energy of the magnetosphePic material



is transferred to the transition region. Then

_ PM VE dVM (3.3)

where VT is the mean velocity of the transition region, MT is the mass of

a meter square column of the transition region, and the integral on the

right is to be taken over the volume of a tube of magnetic flux with one

square meter cross section at the Transition region. Express vE as

vEO k(r/r O) where vEO is the magnitude of the magnetospheric plasma velocity

just above the transition region, r is the geocentric distance of a volume

element, r0 the earth's radius, and k is a function of position along the

field line, which for middle and low latitude field lines (latitudes less

than 60 ° ) varies slowly from unity neap the ionosphere to less than 4

(twice the tangent of the latitude .here the field line intersects the

ionosphere) at the field line's intersection of the equatorial plane.

We may then write

! -2 1 2 i )22 HT VT % _ vEO PM k2(r/r0 dVM (3.4)

-2

Since the mass density PM decreases outward much more rapidly than (r/r O) ,

the equation may be changed to an inequality by replacing PMk2(r/rO )2 by

PMO' the mass density just above the transition region. With this we

have

1 MT _2 < 1 2T _ vEO PMO VM (3.5)

or

_T < (PMOMTVM I vEO
(3.6)
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At 60° latitude (the upper limit at which this argument should be applied),

the volume of a flux tube of meter square cross section at the transition

layer is about i0 l0 m S. The density of ionized material in the lower

magnetosphere is about l0 ll ions/m 3, and we will take the atomic weight

to be 16. This gives

_T < 10-1 vEO (3.7)

O1"

I_T _ B--I< l°-i Ivsl (3.e)

allowing us to neglect the smaller term in the energy equation (3.2).

Writing

IVSl = vEO B (3.9)

equation (3.2) may be written as an inequality

d I 1 2 _ 2B2dV Td-_ _ PM VE dVM < - °l VEo
(3.10)

if we consider only the energy loss associated with Joule dissipation.

This may be rewritten

O_

d [ 1 2 2 B 2
d-_ j _ PM VE dVM < - Yl vEO

(3.11)

d-_ _ '_Mvz dVM< - (2 _1 _Mvz dVM)/HM (3.12)

where MM - [ PMk2(r/r0)2dVM , and use has been made of the equality of the

right hand sides of (3.3) and (3.4).
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The integral is taken over a tube of magnetic flux of square meter cross

section at the transition region, and E1 is the Pedersen conductivity

integrated through the transition region. Thus, the kinetic energy of

the magnetosphere must decay more rapidly than does a quantity T which

decays according to the equation

dT B2/MMd-_= - (2 Z1 )T (3.13)

t

or T = T e T (3.1W)
o

where MM
T £ (3.15)

2 E1 B 2

An upper limit for this can be arrived at by placing an upper limit on

MM as was done earlier.

MM = ; PMk2(r/rO )2 dVM < PMO VM (3.16)

E1 is given by Spreiter and Briggs (1961) as greater than 5 x i0 _ mhos.

Thus, wi_h B=5 x 10 -5 weber/m 2 we find T has an upper limit of I0 -I see.

The time constant we have obtained is an upper limit for the time

which it takes the motion of the magnetospheric material to be damped in

the tmansition region. It is apparent that a continued driving force must

be present if motions of magnetospheric origin are to account for phenomena

of greater duration than this. The effect of the damping will be continued

either for the duration of the existence of the driving force, or until

the _@utrosphere is accelerated to a motion consistent with that of the

magnetosphere. It is unlikely that the latter condition would be achieved

in a reasonable amount of time, if it is indeed at all possible.
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Forces acting directly on the magnetospheric plasma can arise in a

number of ways. Gold (1959) has suggested a kind of hydromagnetic "buoyant"

force arising whenthe energy density in the magnetospheredecreases too

rapidly with distance outward. The idea is analogous to that of the con-

vective instability which exists in a neutral atmosphere when the temper-

ature has a superadiabatic lapse rate. Piddington (1960) and Axford and

Hines (1961) have suggested another kind of force that could give rise to

magnetospheric circulation. They argue that a viscous-llke interaction

takes place between the outwamd streaming solar plasma and the magneto-

spheric material, causing the latter to be driven in the anti-solam direc-

tion. In order that such motion not produce a major redistribution of

the magnetic field, a return flow within the magnetosphere was postulated.

Axford and Hines hoped to explain a wide range of geophysical phenomena

by means of a general magnetospheric convection driven in this way.

Another force acting directly on the magnetosphere, the only one

whose existence is at all well established, is that arising from the

impact of the solar plasma on the magnetospheric boundary. This produces

distortion of the geomagnetic field until a configuration is achieved in

which the plasma pressure is balanced by the magnetic pressure of the

distorted earth's field. Such a distortion producing force was originally

suggested by Chapman and Ferraro (1931) to account for the first phase of

geomagnetic storms. Later Parker (1960) suggested that solar plasma is

always streaming away from the sun, producing a continuing distortion of

the earth's field. In order to maintain the magnetosphere in its position

in space the force of the solar wind must be countered by an equal and

opposite force exerted on the field in the geosphere and in the conducting
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portions of the atmosphere (Piddington, 1963). Although we will not here

be specifically concerned with forces having their origin within the mag-

netosphere or at its boundary, it will be of interest to have an estimate

of the magnitude of this force. On a quiet day the velocity of the solar

plasma has been estimated to be 300_600 km/sec and the density is (2_20) x

107 protons/m 3 (see Parker, 1964 for a compilation of observations). This

gives rise to a force on the boundary of 3 x i0 -I0 to 1.2 x 10 -8 newtons/m 2.

Since the cross section offered by the magnetosphere to the solar wind is

about 50 times the area of the earth's entire surface, this force must be

balanced by an average force near the earth's surface of 1.5 x 10 -8 to

6 x 10-7 newtons/m 2. From an active sun, velocities of order 2000 km/sec

and densities of perhaps 3 x lO7 protons/m 3 may be expected, leading to

forces at the earth's surface as large as 10-5 newtons/m 2. These may be

compared with the forces between the magnetosphere and neutrosphere in

the transition region manifested by the Sq magnetic perturbation which

is of order 10 -6 newtons/m 2.

1.4 Dynamo Action, Collisions, and Currents

Earlier we mentioned in passing that the momentum transfer occurring

in the transition region could be viewed microscopically as the result

of collisions between neutral particles and charged particles, and

macroscopically, as being a Lorentz force. In this section we will dis-

cuss the relationship between these two points of view. Let us consider

for a moment the behavior of an ion and electron gas in the presence of

a magnetic field and an orthogonal electric field. If the system is

examined in a reference frame moving with velocity _ = _ x B/B 2 the

electric field is transformed away, and the ions and electrons are found



to be gyrating about centers fixed in that reference frame.

case, the electric field produces no current in the plasma.

12

In such a

If the elec-

tmic field is time varying, the preceding argument fails in that a refer-

ence frame moving with velocity_ will no longer be inertial. The same

will be the case if there are spatial variations of _ and _ such that a

reference frame moving with velocity _E undergoes accelerations in the

course of its motion. Let us suppose, however, that a mean velocity vE,

corresponding to the mean electric field E can be defined. The time

variation may now be expanded in terms of a Fourier series and treated,

following Chandrasekhar (1950), by letting _i be the velocity of particles

relative to a frame moving with velocity_. We have fop the equation of

motion

mi+_l+mi_ : qi(E+zlxB_+_xB_) : qiv_ixB_ (4.1)

where # is the partial derivative of v with respect to time, taken in
w

the specified reference frame, qi is the charge of the particle of species

i, and m. is the mass of such particles.
l

We now define the velocity v. such that
--l

v. : _ _xB: mi
--_ qi B2 qi B2 -- '

having taken B to be constant, and write

(4.2)

v1 : v2 +v i. (4.3)



With this equation (4.1) becomes

13

mi# 2 + m._. : B (4.4)-- i--i qiv--2×

If the ch_acteristic frequency u of the electric field is small compared

with the Lar_nor period _. and if l_El/Iv21 is also small then the

second term on the left can be neglected, since

%1__2.B_1%2 B3v2 _ v2
(4.5)

With this approximation, we have

mi!2 : qiv-2* B_ (4.6)

which is the equation for the circular motion of the particle. However,

an additional drift motion is now superposed on it,

V,

--l

m°

-_--_6
: B2 -- ,

qi

(4.7)

which is called the polarization drift. Since the drift is opposite for

particles of opposite sign , this will be associated with a current of

density

: _ (4.8)

= Z niq i v--i B2% i

where n. is the number density of particles of species i
l

Taking the cross product of this with B we have

J x B : _ (E x B) : Pp _E (4.9)
-- B 2 @t -- --
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Thus, the polarization current may be considered to be associated with a

Lorentz force which accelerates the plasma such that it always moves with

velocity _.

Let us now assume that there is a neutral component of the gas which

we consider to be stationary in our reference frame. As previously, the

charged particles will gyrate in the magnetic field about centers that

drift with a velocity _ x _/B 2, but now their motion will be frequently

disrupted by collisions with the neutrals. In the average collision the

amount of momentum transferred from the neutral to the charged particle

is

m. (_n - v.) , (4.10)l wl

where v is the velocity of the neutral particles.
--n

If such collisions occur with a frequency npVin , (where np is the

numbem density of ions and v. is the collision frequency of an ion with
in

neutral particles) we have for the total effective force between two

typical constituents of the gas

C. = n _. m. (v - v.) (4.11)
--in p an I -n --l

and for The equation of motion of the constituent i

Oi "--vi= C--in + qi (v._1 x_B + _E) (4.12)

where all collision terms except those with the neutrals are ignored.

If the gas is quite lightly ionized two simplifications may be made.

First, as we have already assumed, collisions between electrons and ions

will be unimportant compared to collisions between the charged particles
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and neutral particles. Second, a kind of quasi-equilibrium may be con-

sidered to exist in which the neutral component may be considered almost

unaffected by the collisions with the charged particles. Making these

simplifications, the charged components can be considered in a kind of

equilibmium under the effect of the electric force, qiE, the magnetic

force, q.v. x B, and the friction-like force produced by collisions with
i--i --

the motionless neutrals, n 9. m.v.. Since our reference frame is such
p zn _--a

that the neutral component has no mean motion, the magnetic fomce and

the collisional force will be orthogonal to one another. Thus, a vector

diagram of the forces on the ionized component at equilibrium (Piii = O)

will be a right triangle with the electric force along the hypotenuse

(see Fig. 1). The angle which mean velocity vector v. makes with the
--a

electric field, designated 8i, is given by the relation

qivi B to.1
tan 8. = = _ (4.12)

1 n u.m.v, u.
p an i I an

where to'l= qiB/npmi

The speed v. may be found from the relationshipl

qiE sin 8i = qivi B (4,13)

It has a component in the direction of E

v. = (E/B) sin 8 cos e
iI_ i i

E 9. to.an a

B 2 2
9. + to.
an I

(4.14)



Fig. i Vector diagram of the forces on a positively charged

component of a slightly ionized gas, as seen in a

reference frame in which the neutral component is

motionless. The mean velocity of the component is

shown by vector _i"
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and a component in the direction _ x
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vii = (E/B) sin 2 8.1

2

E I

B 2 -' 2
9. -I- b).

in 1

(4.lS)

The velocity of the electronic component will be similar, the chief dif-

ference being that the component VeLt will now be oppositely directed to

the electric field, since the gyrofrequency _. will become negative with
l

the negative charge on the electron. A discussion of these equations

may be found in Chapman and Barrels (1940, Vol. 2) and Martyn (1947).

These velocities may now be combined to obtain an expression for

the current. Thus

J = en (v. - v ) (4.16)
-- p --l -e

J|l = E e2n 1 u. u
p 2 2 (q.17)

(_. + _. ) m e (2 )
in l en

e2np[ i elJ_ : E 1 mi l
2 + 2

(v.2 + m.) m e + 2)
in l ( Yen e

(_.18)

where we have expressed B in terms of the gyrofrequency and mass of each

species of particles. In the above and following equations the subscript

i refers to the positively charged ions. The component of current in the

direction of the electric field, JH , is known as the Pedersen current,

and that in the direction _ x _ (the second, or electron term of Ji is

negative and larger than the first or ionic term) is known as the Hall

current. If a reference frame is employed in which the neutral component
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is in motion, these equations may still be used with E replaced by

E • v x B. Much use will be made of this in later chapters. We will

call the vector v x B the dynamo electromotive force, and E, which will

be found to arise from various accumulations of charge in the magneto-

sphere, will be expressed in terms of a scalar potential

E = -VS (4.19)

In arriving at the expressions for the Hall and Pedersen currents

the somewhat unrealistic assumption was made that the neutral component

was always stationary in the reference fr_e. If we write the equations

of motion for the three components, making neither this last assumption,

nor the assumption that collisions between electrons and ions are

negligible,

p_ = C . + C (_.2o)
r_-n --Ill --he

PiVi = --inC"+ --iC'e+ qi (E_ + --Iv"x _B) (4.21)

PVe--e : C + C ÷ qe (E + v x B) (4.22)--en -el -- --e --

and take the sum of the three we have

where p[ =

pG = J x B (4.23)

P_n * PiVi + Pe_"

Thus_ the center of mass of the entire gas may be considered to be

accelerated by the Lorentz force J x B. Insofar as the ionized compon-

ents may be considered of negligible mass and to be in a quasi-equilibrium
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state, This Lorentz force maybe considered to be acting on The neutral

component, and in time will indeed produce an appreciable motion of the

neutral component. Thus, in treating the conduction of current in a

partially ionized gas, either the equations of motions of all the con-

stituents must be included along with a dynamo electromotive force in

the current equation, or the motion of the neutral component must be

known, as well as the electric field. In the main part of this work the

latter course will be followed, since, as will be shown in the following

chapter, it is at present impractical to attempt to work with the equa-

tions of motion of the dynamo layer. In Appendix A an expression is

derived for the current under the steady state application of a sinus-

oidally varying electric field, including the simplified equations of

motion for the three constituents. Since the current will not be in

phase with the applied electric field, the conductivities thus derived

are analogous to the admittance of a.c. circuit analysis.

We have so far referred to the region separating the neutrosphere

and the magnetosphere by the somewhat uninformative name "transition

region". Since the currents characteristic of the region are primarily

driven by the dynamo electromotive force associated with motions of the

neutral component of gas, the region has been generally known as the

dynamo region or layer. At this point in our development it will be

convenient to adopt this term.

1.5 Historical Review of the Dynamo Theory of the Sq_Ma_gne_tic Variation

Heights above about 90 km have usually been considered outside the

scope of meteorology. However, there was considerable interest in the

dynamics of the partially ionized levels above I00 km even before the
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present interest arising from the recent discoveries of the existence and

character of the magnetosphere. This earlier interest was directed toward

attempting to establish the origin of the Sq magnetic variation, a daily

fluctuation of all three components of the magnetic field having a magni-

tude of some tens of gammas that persists on days that ame otherwise quite

free of magnetic activity. Generally these works followed the suggestion

first put forward by Balfour Stewart (1882) who, after demonstrating the

futility of trying to explain the magnetic fluctuations by some earlier

suggestions, such as solar magnetic fields, temperature induced variations

in the paramagnetism of oxygen, and ther_no-electric curments in the earth's

cmust om atmospheme, advanced the idea that so-called tidal motions of a

conducting atmospheme thmough the eamth's magnetic field could pmoduce

the cumments that give mise to the obsemved magnetic fluctuations.

The dynamo theomy, as Stewamt's idea has come to be known, was put

into a quantitative form by Schuster (1908) who, after establishing the

pmimarily extemnal omigin of the magnetic vamiation, demonstmated that

the uppem atmosphemic curments could be explained by convective aim motions

similar to those observed at ground level. He went on to estimate the

total conductivity of the upper atmospheme, and pointed out that, while

the conductivity could not be determined with any cemtainty because of the

unknown relationship between the ground level tidal oscillation and that

in the dynamo region, it must nevemtheless be lamge if the tidal oscil-

lations themselves were not to be unexpectedly large.

One gamma is equal to 10 -9 webems pem squame meter and might be appropri-

ately, but rather awkwamdly, refermed to as a nanowebem pem squame m_tero
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Chapman (1913,1918) extended Schuster's mathematical theory by

employing a more general expression for the variation of conductivity with

solar zenith angle. He went on to consider the dynamo theory as applied

to the L magnetic variation, that component of the magnetic variation which

has a period related to the lunar day. While the L variation is compar-

atively small, it offers the advantage of owing its origin to a tide pro-

ducing force whose character is well known. From this analysis it was

determined that the conductivity of the dynamo region must be a factor

of ten greater than that estimated by Schuster. Some difficulties were

raised by Pedersen (1927), who pointed out that the magnetic field would

inhibit currents transverse to itself. Taking this into account, the

early calculations of the ionospheric conductivity gave results that were

insufficient to meet the requirements of the dynamo theory by more than

three orders of magnitude.

Later studies of atmospheric oscillations by Pekeris (1937) and

Taylor (1936) reduced this discrepancy by showing that the speed of the

tidal motion could be expected to increase with the inverse square root

of the air density. Thus, in the sparce upper atmosphere the oscillations

might be a great deal larger than those at the ground. However, the

dynamo theory still seemed to be inadequate by a factor of 5 to i0.

The next important step was taken by Hirono (1952), and independently

by Baker and Martyn (195g), who showed that a polarization of the medium,

arising from the inability of the currents to have a vertical component,

could enhance the effective conductivity of the layer sufficiently to

allow an explanation of the Sq magnetic variation in terms of the dynamo

theory. They also found that the polarization effect would be especially

strong near the equator, permitting an explanation of the equatorial
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enhancement of the quiet daily variation. About a year later Fejer (1953)

published yet another independent derivation of the enhancement in conduc-

tivity arising from the vertical polarization of the layer, and then went

on to estimate the magnitude of the ionospheric wind, avoiding certain

assumptions made by the earlier workers.

With the dynamo theory now on apparently firm footing, two attempts

have recently been made to deduce the wind system in the dynamo region

from the observed Sq maEnetic variation. Maeda (1955) solved the dif-

ferential equations describing the dynamo effect for the wind potential,

having made the assumption that the wind responsible for the dynamo action

was irrotational. Kato (1956) elaborated on this by including with the

dynamo equations an equation of motion for the atmosphere in the dynamo

region. By assuming that the driving force for the wind could be expressed

as the gradient of a scalar, and by taking account of the Coriolis force,

he was able to deduce both irrotational and solenoidal horizontal winds

in the dynamo layer. The practicality of this rather attractive approach

will be discussed in the next chapter, after the dynamics of the dynamo

layem are considered.

Recently, the excitation of atmospheric oscillations has been studied

in more detail by Jacchia and Kopal (1952) and most recently by Butler

and Small (1963). They examined the gravitationally excited free oscil-

lations of the atmosphere (cf. Pekeris (1936)) for reasonable temperature

profiles in the atmosphere and showed that such free oscillations do not

exist. Instead, Butler and Small (1963) have shown that observed char-

actemistics of the diurnal, semi-diurnal and terdiurnal oscillations can

be explained by ther_ally forced oscillations; they proposed that this

is due to a direct absorption of insolation in the ozone layer. Their
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calculation shows that the excited diurnal oscillation is, however, very

small in spite of the fact that the diurnal component of the absorption

is the largest. They attribute this to the smallness of the associated

equivalent depths and the large range in height over which the absorption

by ozone is appreciable. Butler and Small (1963) showed that the thermally

forced oscillation can explain the major portion of the semi-diurnal os-

cillation of the atmospheric pressure obtained by Simpson (1918), Haurwitz

and Sepulveda (1956) and others, without involving the resonance hypothesis.

They also claim that the thermally excited oscillation has a node a little

below 30 km in height giving the change of phase of 180 ° between the at-

mospheres below and above that level, which is found in the analysis of

the quiet day magnetic variations.

Both Maeda (1955) and Kato (1956) showed, however, that the wind

system responsible for the Sq variation is more diurnal than semi-diurnal.

This does not necessarily mean, of course, that the semi-diurnal component

does not exist in the dynamo region. This is discussed further in Chap-

ter 3.

To place the present work in the context of the preceding, it is

pointed out that most of the earlier works have been directed toward

establishing the validity of the dynamo theory, although the latter two

might better be considered applications of the theory to the determination

of ionospheric winds. Here we will be primarily interested in estimating

the nature of the magnetospheric motion arising from the quite strong

coupling of the magnetosphere to the dynamo layer. To undertake such a

problem does not immediately take one far beyond the preceding works,

since this magnetospheric motion is determined by the electrostatic field

arising from the dynamo action, and in each of the earlier papers the



24

author has determined such an electrostatic field as a by-product of his

calculation of the dynamo layer currents or winds. The new derivation

that will appear in Chapter 3 is justified only in that it employs a means

by which the layer conductivities may be represented in a quite general

way and in that it makes a somewhat more precise distinction between the

current producing component of the wind, and that component which produces

no current.

In Chapter 4 another refinement to the dynamo theory is made by

considering the effect of differences between the winds in the northern

and southern hemispheres. While these differences do not influence motions

of magnetospheric material, they will produce some distortion of the mag-

netic field, an effect that could be of importance in interpreting geo-

physical phenomena at geomagnetically conjugate points.



CHAPTER 2

DYNAMICS AND KINEMATICS OF THE DYNAMO REGION

2.1 Reference Frame

To avoid some ambiguity in the following where we will be dis-

cussing magnetic and electric fields in the vicinity of the rotating

earth, it is well to consider at the outset the various reference frames

that can he used. The nature of the choice can be well illustrated by

means of the unipolar inductor. If a cylindrical bar magnet, which we

will assume has symmetry of field as well as of material about its axis,

has the leads of a galvanometer connected to it, one at the axis A (see

Fig. 2) and the other by means of a sliding contact to the cylindrical

surface at C, and if the magnet is rotated, theme will be an indication

of a current through the galvanometer. This effect can be as well ex-

plained in terms of the usual dynamo effect using either a non-rotating

meference frame (i.e., one motionless with respect to the galvanometer

circuit) oP a reference frame which rotates with the bar magnet. From

the first point of view, the c0nducting material of which the bar magnet

is composed must be considered to be rotating in its own magnetic field.

Thus, if the magnet rotates clockwise about the end where the galvanometer

lead is attached, which we will assume to be the end at which the magnetic

field is directed outward, a current is induced toward the center of the

bar magnet. From there the current will continue along the external cir-

cuit provided by the galvanometer leads. Note that no induction effect

takes place in the galvanometer leads as they ame motionless in this

reference frame.

25
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Fig. 2 Unipolar inductor. When a bar-magnet N-S is rotated

around its axis AA' a current is obtained in a fixed

circuit connectin_ the axis with a slidin_ contact
at C. From Alfvcn (1950).
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Fromthe second point of view, the material of the bar magnet is

motionless, so no induction effect takes place there. However, the

galvanometer and its leads will now appear to be rotating about the bar

magnet's axis in the counterclockwise direction, causing current to be

induced in the leads in the direction from the bar magnet's axis to the

sliding contact at the cylindrical surface. The material of the bar

magnet serves to complete the circuit, but is now considered passive as

regards the induction of the current.

The important point to note is that the behavior of the unipolar

inductor can be described in terms of either of these reference frames,

or in any other reference frame, without at all having to introduce the

concept of '_otion of the magnetic field". Indeed, classical electro-

magnetism has attached no meaning to this phrase.

If there were asymmetry in the magnetic field of the bar magnet just

discussed the analysis would be the same. Now, however, when employing

the reference frame in which the galvanometer circuit is motionless one

finds that there are periodic time variations in the magnetic field, and

consequently, corresponding variations in the current.

In the absence of a complete current path, as would be the case if

the galvanometer leads were not in contact with the rotating bar magnet,

a current would Be induced as previously. Now, however, it leads to an

accumulation of charge and an electrostatic field which when fully

developed will just cancel the induction effect.

In like manner we may use many different reference frames in

describing the rotating earth and its magnetosphere. If one is con-

sidering effects of the inclined magnetic axis and the anomalies in the

field it would be well to employ a system fixed to the solid earth.
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However, if one is content to ignore the smaller scale structure in the

field near the earth and to idealize the problem furthem by takinE the

earth's dipole axis to coincide with the rotational axis, a considerable

simplification can be realized in the description of the field at great

distances by employing a reference fmame that is stationary with respect

to the sun-earth line. Thus, the great distortion of the field produced

by the solar wind at geocentric distances Ereater than a few earth madii

can be descPibed without laPEe time variations, insofaP as the vaPious

forces that mold the magnetosphePe ape in equilibrium.

The motions of the solid eaPth and of the magnetosphere , from this

point of view, will be associated with an electric field E = v x B.

As Hines (1959, 1964) has pointed out, the electric field associated with

the Potation of the solid earth would by itself tend to produce co-Potation

of the magnetospheme by the following pPocess. Poleward eaPth curPents

would be induced by the eamth's Potation in the geomagnetic field. Such

current would continue until theme is sufficient chapge accumulated at

the poles and equator to give Pise to an electrostatic field capable of

dmivin E equal eaPth currents equatorwaPd. But such an electPostatic field

would exist in the space suPPounding the eamth as well as within the earth

itself, and so would produce emotion of the magnetospheme with velocity

= E x B_/B2. However, the motion of the magnetosphePic material is mope

influenced by the motions of the atmosphere in the dynamo Pegion and can

he expected to show considePable depaPture from the simple Potation

dictated by the solid eaPth. FoP example, Potation at a gPeateP oP lesseP

mate than the solid earth and me_idional components of motion probably

exist because of various winds of the atmosphePe.
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While we will usually find the reference frame fixed with respect

to the sun-earth line the most convenient, on oocasions it will be use-

ful to use a reference frame moving with velocity _ such that

= E x B/B 2

In such a reference frame there will be no electric field. If accelera-

tion occurs in the course of such motion, it may be treated either by

introducing a time varying electric field, as was done in Chapter i while

discussing polarization currents, or by introducing a gravity-like force

arising from the inertia of the material whose motion is being considered.

2.2 Equations of Motion

In this section we examine the equation of motion applicable to the

atmosphere in the dynamo layer where the behavior of the gas makes a

transition from purely hydrodynamic to purely hydromagnetic. The equation

of motion of a gas in a magnetic field may be written (cf. Chandrasekhar

(19Sl)).

P-- + O(V. V) v_ = V • [T] + oX+ _(V X H) x H
_t

(2.1)

In the first approximation we may consider the earth's magnetic

intensity H to be a dipolar field HO _ the terms of non-electromagnetic

origin, represented by p X arise mainly from the earth's gravitational

field, which we will represent by _0" [T] is the total stress-tensor and

includes viscous as well as pressure terms. Let us then consider the zero

o_¢er approximation in which a steady state with no gas motions is

assumed to exist. Then, since V x HO = 0, the above equation reduces to

V • [TO] + pX = 0 (2.2)
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the equation of hydrostatic equilibrium. As a first order approximation,

we may introduce the rotation of the earth. Under these circumstances

we may expect a velocity v 1 and perturbations of the stress-tensor [T_]

and perturbations of the magnetic field H i , where the primes will here

be used to indicate perturbation quantities. These give an equation of

mot ion

_v1

p --+ p(v 1 • V)v 1 = V • [T O] + V • [Tl] + pX (2.3)
t -0

! 1 !

+ .(v x H_l)x _H0 ÷ .(V x H_l)x H_I

Applying the equation of hydrostatic equilibrium, and neglecting the term

!

containing the square of _, we have in the steady state

!

o(_I. v)vl: v. [Tl] ÷J_lXB_o (2._)

where we have applied the electromagnetic equations

v "-1= (2.5)

In the case of uniform rotation, the term on the left of (2._) be-

comes -r_ 2 sin e (l_m sin e + _ cos e) where fl is the angular velocity of

the eamth and e is the colatitude. This is the centripetal force that

must be applied to the rotating atmosphere. In the neutral atmosphere

this is provided by a perturbation pressure field associated with the

earth's oblateness. In the ionized portion of the atmosphere the Lorentz

force would be capable of contributing to it as well. However, it is

unlikely that the magnetic field could long support such a sustained
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force. The diffusion of the plasma through the magnetic field would

eventually lead to a redistribution of the ionized atmosphere in which

the pressume gradients and centripetal force would be in balance. Thus,

in the steady state:

and

J1 x B 0 = 0 (2.6)

!

-r_ 2 sin 8 (1 sin 8 + l_ cos 8) = V • IT I] (2.7)

At greater geocentric distances, where the magnetic field is con-

sidered to be retaining the earth's outer atmosphere the Lorentz force

must be considered to provide the centripetal force, and possibly a

reaction to some pressure terms as well.

We here adopt the custom of the meteorologists and include the

centripetal force with the gravitational force _0 to provide an effec-

tive gravity which we denote X_. Pressure perturbations will then be

measured from those of rotational equilibrium [TI] where

V • [TI] + PX_l = 0 (2.8)

and the magnetic field will be assumed unperturbed by rotation, as implied

by equation 2.6.

We may now make the next higher approximation in which we may expect

a stress-tensor [T2] , a velocity _2 , and a magnetic field _2 which may

be represente4 in te_ns of perturbatlons _m the rotational equilibrium

values
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[T2] = [TI] -_ [T_]

(2.9)

Assuming a steady state, and throwing out all second powers of

v__ and HW2, we have

!

 ( l.V)Z2+ 1
!

(2.10)

where the driving force for the perturbation may be considered to be

in the perturbation stress-tensor, arising from the daily solar heating,

and in a perturbation gravity field _'2" The terms on the left may be

written

p9 _ V2 ÷ 2p9 COS 8(l..rXV_)- l._2pv21£sln e + 1A2pv;r£ sin 8
(2.11)

and compared with the terms appearing in the equation of motion as

observed in a rotating reference frame. The first term is then associ-

ated with the usual inertial terms, the second with the Coriolis force,

the third with a vertical Coriolis tePm which is usually neglected,

being small compared to gravity, and the fourth is also usually neg-

lected by assuming the motion to be horizontal.

2.3 Magnitude of Terms in the Equation of Motion

The linearized equation of motion obtained at the end of the last

section is sufficiently general to be applied to the motions of the

dynamo layer. We may now consider the order of magnitude of the various

terms to see which of them must be considered in any calculations. The
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value of the Lorentz term J x B, integrated through the entire layer

may be calculated with considerable assurance and so may be used as a

reference to which the other forces may be compared. The magnitude of

the Sq magnetic variation, about 30 gammas, can be attributed to a cur-

rent of about 0.02 amperes/m distributed through the entire dynamo layer.

Multiplying this by the magnetic induction of 5 x 10 -5 webers/m 2 we arrive

at a Lorentz force of 10 -6 newtons/meter sq column.

The inertial terms may be next considered, starting with the Coriolis

terms, 2D _ cos e(1 x _h). Tidal winds of order 50 m/sec in the dynamo

region (Kochanski, 196_) have been indicated by sodium cloud release

experiments. Taking a middle latitude and a total mass of a meter square

column above I00 km of 3 x 10 -3 kg we find an inertial force of 1.5 x 10 -5

,
newtons/m 2 column. The first term of (2.11) of the form pR_ v 2 may be

as great as 2 x lO -6 newtons/m 2 for a 50 m/sec semi-diurnal wind and half

as much fop a diurnal wind of that magnitude.

Passing over the perturbation gravity term, the stress tensor includes

pressure terms and terms expressing viscous stress. The viscous stress

will arise either fPom the usual process of molecular viscosity or from

eddy viscosity if turbulence is present which is the case between 90 and

lO0 km. We may obtain an estimate of the viscous fomce exerted on a

meter square column of the dynamo region by considering the viscous stress

exerted on a horizontal meter square surface just below the dynamo layer.

If we place such a surface within the turbulent region below I00 km,

the coefficient of eddy viscosity applies. From obsemvations by Blamont

and de Jager (1961) of the scale length, time and velocity of the eddies,

Hines (1953) has estimated a coefficient of eddy viscosity of i0 -4 kg/m

sec at 95 kin. The 50 m/sec large scale winds have been observed to undergo
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changeswith height of wavelength 20 km, so a shear of order

1.5 x 10 -2 sec -1 may be expected, givln E an eddy viscous stress of

1,5 x 10 -6 newtons/square meter which may be taken to be applied to the

entire overlying column. If one goes to a greater height, above the upper

limit of turbulence, the coefficient of molecular viscosity of 10"7 kg/m sec

applies. Using the same wind shear a molecular viscous stress of 10 -5

newtons/square meter is obtained. This leads to the question of how to

account for such a difference in stress. In part, it may be accounted for

by an increase in the wind shear near these heights (Kochanski, 1964) which

would make the molecular viscous stress larEer by a factor of perhaps 5.

The fact that the atmosphere is becoming ionized at these heights suEgests

the possibility that Lorentz forces may also play a part in transferring

horizontal momentum to overlying regions. The point is discussed rather

inconclusively in Appendix B_ along with the possibility that such effects

could account for the cessation of turbulence at the lower boundary of this

region. It is there concluded that the molecular viscositywill be more

influential in this regard_ unless the conductivity is greater neap 100 km

than sugEested by the model atmospheres that were used in the estimate.

The pressure gradient terms are a bit more difficult to take into account.

Kato (1956) attempted To infer a pressure dlstribution from the observed

Sq magnetic variation by using the dynamo equation combined with a simpli-

fied hydrodynamic equation. He was thus able to relate the current_ expres-

sed as a current function (analoEous to a stream function) to the pressure-

llke term he assumed to be driving the systam. Using his results and assum-

ing The dynamo action takes place near 110 km (since one must employ a mass

density in order to make use of the kinematic pressure he derives) the

expected for_e on a meter square column is found to be 2.5 x 10 -6 newtons.
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The significance of this number lies in the fact that it is not large

compared to the other terms we have already discussed. This suggests

that the viscous and LoPentz force terms ape not negligible as Kato

assumes. The viscous ter_ is pePhaps the critical one, for it may be a

means by which the dynamo circulation is driven by a solenoidal force

(of form V x a) as well as the V# foPce assumed to exist ezclusive of

others by Kato. In any case, we may conclude that the pressure term is

certainlynot large compaped to the other terms in the equation of motion.

2.4 Resolution of the Wind into Symmetric and Antis)aametric Papts

Earlier treatments of the dynamo theory have neglected the fact that

the dynamo layers in the two hemispheres ape joined by highly conducting

field lines. As suggested by Dougherty (1963), it is probably a better

approximation to regard the northern and southern dynamo regions as being

joined by perfectly conducting wipes rather than not being connected at

all. In late# sections we verify this last statement; first we outline

the manner in which this problem is here treated.

Consider an operator R which when applied to a_.(r,8,A), a vector

fleld expressed in spherical coor_linates (1) changes the sign of the 8

component and (2) replaces the unit vectors with those appropriate to

posit_on (#,_-@,A). Thus

R a_(r,e,X) = R[ar(r,e,>,) l_r(v,e,k) + ae(e,e,X) _e(r,e,X) + ax(r,e,X)

_(r,e,x)]

a (r,e,A) ip(r,_-s,k) -ae(P,e,x) le(r,_-e,x) + ax(r,e,x) 1_xCr,w-e,x)
#

(_.i)



Two successive applications of the R operator return a vector to its

initial value, so the R operator is its own inverse,
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a - R-I R a - R R a (_.2)

Any general vector field expressed in spherical coordinates may

be written:

2_ 1a(r,8,k) = a(r,8,k) ÷ Ra_(r,w-8,1)] + _a(r,8,k) - Ra_(r,_-8,k)] (q.3)

The first term on the right may be called the symmetric component

of a(r,8,A) which we shall denote _(r,8,A) and the second term, the

antisymmetric, denoted a (P_8_A). The names symmetric and antisymmetric
--a

arise from the property

Rs(r,e,A) = R a (r,_-e,A)-s
(4.4a)

:- R (4.4b)

The symmetry is such that if the space in which a symmetric vector field

of this kind is represented were bisected at the plane 8 = _/2 by a mirror,

the appearance of the system would be the same.

We may define symmetric and antisymmetric scalar functions gs and

ga such that

gs(r,9,X) = gs(r,_-8,_) (4.5a)

ga(r,8,A) =- ga(r,w-8,A) (4.5b)

The gradient of a symmetric scalar function is a symmetric vector,

and that of an antisymmetric scalar function is an antisymmetric vector.
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This is obviously true for the r and X components. That the @ component

also assumes the right sign follows if one remembers that a symmetric

function as here defined is one that is symmetric with respect to 8 about

I _gs

the equatorial plane. The @ component of Vgs is _e_e- which will he

antisymmetric about the equatorial plane. Thus

Vgs(r,e,k) = R Vgs(r,_-e,;,) (_ .6a)

A similar argument applies for the antisymmetrie case.

The divergence of a symmetric vector field is a symmetric scalar,

and of an antisymmetric vector field, an antisymmetric scalar. Again,

the r and k components are easily understood, so we examine only the

i _ (v@ sinS).term arising from the 8 component of the vector field, r sin@ _8

Multiplication or division by sin 8, a symmetric scalar, does not influ-

ence the symmetry properties, but taking the derivative with respect to 8

reverses them, as is required to verify the stated property. We may

thus write

V gs(r,e,X) = RV gs(r,,-e,X) (4.6a)

V ga(r,e,X) = -RV ga(r_-e,X)
(4.6b)

V . a (r,e,k) = v . a (r,_-e,X) (4.6c)
--6 --S

v . a(r,e,k) = -v. -aa(r,=-e,;_) (4.6d)

The following properties of cross-products among symmetric and

antisymmetric vectors will be useful:

a x b a - antisymmetrlc (4.7a)-.a

a x b - antisymmetric (4.7b)
--6 -'6



ba x - symmetric

ba x - symme_:r_c--a --s
(_.7d)

We prove the second case, all others being the same except for some

changes in sign.

aCr,e,x) x _(r,e,x) : z.%(r,,-e,x) x __.sCr,,-e,,)

--p

asr(r,_-e,l) -ase(r,_-e,X) asx(r,_-e,X)

bsr(r,=-e,x) -bse(r,=-e,x) as_(r,_-e,x)

(q.8)

: -Z [a(r,_-6,X)x b(r,_-e,x)]

A two dimensional solenoidal vector field c defined on a shell of

constant r may conveniently be described by a stream function s(e,A)

using the relationship

c = 1 x Vs (4.9)
_ --p

Since 1 is a symmetric vector, c is symmetric if s is antisymmetTic and
--i.

antisymmetric if s is symmetric.

The preceding may be usefully applied to the dynamo problem where

the effects of conductivity along the field line are to be considered.

Let the velocity field descPiblng the wind system in the dynamo layer be

represented by a vector field_. This may be divided into a symmetric

and antisymmetric component, as we have just discussed. The vector field

representing the geomagnetic Eield, _, here assumed to be dipolar, is

antisymmetmic. Consequently, the dynamo electromotive foz_ce associated
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with the symmetric component of the wind, v x B, is symmetric, while
-'S --

that associated with the antisymmetric wind component is antisymmetrlc.

Assuming the conductivities to be symmetric, the dynamo-driven Pedersen

current as well as the dynamo driven Hall current will have the same

symmetry properties as the wind that drives them. This is easily seen in

the case of the Pedersen current. As regards the Hall current, which

02

is of the form -_ _ x (_ x _), one need only note that neither taking

the vector product with an antisymmetric vector (_) nor multiplication by

a symmetric scalar produces a chanEe in symmetry.

Prom (4.6) it follows that the divergence of the dynamo driven cur-

rent will be symmetric or antisymmetric depending on whether the current

itself is respectively symmetric or antisymmetric, and will Eive rise to

electrostatic fields with corresponding symmetry.

At the equatorial plane, the e component of symmetric vector fields

is zero, since

= -

while the r and _ components may take finite values. For antisymmetric

vector fields, the 6 component may take finite values while the r and

components must be zero at the equatorial plane.

It follows that v will lead to no current along the field lines,--S

since such a current would have to be entirely in the e direction at the

equatorial plane, but v could lead to finite electrostatic fields _rans-
--S

verse to the magnetic field at the equatorial plane (in the _ end r direc-

tions). The electrical state of either hemisphere would not be altered

in the least if the field lines were severed at the equatorial plane and
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left open circuited. Consequently, symmetric dynamo action may be

treated by considering only one hemisphere and assuming the field lines

simply end at the equatorial plane with no connection between them.

Antisymmetric dynamo action will lead to finite currents along the

field lines but with no electrostatic field transverse to the magnetic

field (in the r and _ directions) at the equatorial plane. Here the

situation would be in no way changed by introducing a perfectly conducting

equatorial plane, allowing us to treat the problem of antisymmetric dynamo

action by again considering only one hemisphere, but now having all the

field lines terminate at the equatorial plane in a short circuit.

Thus, if we employ linearized equations of motion, and a linear dynamo

equation, we may divide the problem into two parts, one treating symmetric

fields and the other antisymmetric fields. Each of these need be

considered only in one hemisphere, the effect of the other hemisphere

being taken care of by the application of the appropriate boundary

condition at the equatorial plane.

2.5 Resolution of the Symmetric Component of Dynamo Action into Current

Producing and Non-curTent Producing Parts

Gold (1959) noted that there are certain types of motion of the

magne_ospheric plasma which involve no magnetic work, or said otherwise,

that bring about no redistribution of the magnetic field. In the dynamo

layer and just above, such redistributions of the magnetic field are quite

negligible, so the magnetospherlc plasma may here be considered to be con-

strained to such a class of motions. The magnetosphere will tend to fol-

low the motions of the dynamo region because of the strong coupling between

the two. However, it will only follow such motions insofar as they are in

accordance with the constraints imposed by the magnetic field distribution.
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It iS useful to divide the motion of the dynamo region into two components,

one that the magnetosphere can follow and the other that tends to move

the magnetosphere in opposition to the constraints.

Antisymmetric motions in the dynamo layer cannot be followed by the

magnetosphere because all the material on the same field line at any

instant must move together from one field line to another, a condition

which we have been considering a second constraint. Here the symmetric

component of motion will be considered exclusively.

The class of motion discussed by Gold (1959) may be expressed

-VS 1 x B

_E = 2
B

(5.1)

where SI, the electPostatic potential, is constant along each field line.

Thus, VSI, is orthogonal to B and its radlal (r) and latitudinal (B) com-

ponents ape thus related:

B

L ,Sl}e : - (VSl)'` x - -(VSl)', Be (5.2)

Here X is the dip angle of the magnetic field and (VSl) 8 is the lati-

tudinal (southward) component of the gradient of S 1. Using (5.2) and

expressing B as (ipB r + I_SBB), (5.1) may be written

2 BBBr B e

P

(5.3)

The constraints that have been discussed place no restriction on motion

along the magnetic field, and the above equation gives only the component
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of motion perpendicular to the field. Since the motion in the dynamo

region is assumed to be horizontal, a motion along the field_ _ll , will

B 8

be added to the abo4, having a madial component -y (VS1) _. Its com-

ponent in the 8 direction is then ------- (VSi) , allowing us to write
B B2 A
m

2 2

Br B8 B 8

v, vt, B2 -it* VSl+ h B2B (VSl)e- -leB (VSI)_ (S.4__ _ B 2
m r

1

= -- 1 x VS 1B --r
r

If we define v. _ v. + v and rewrite (5.4) as
--L --II

_I = -It* VSl= -v . Sl_

we find that S 1 may be considered a stream function for the vector field

Bm_Vl, which implies that

V . Bz_v1 : 0, (5.5)

the condition upon which the constraint is based.

A vector field limited to a finite region of space may be uniquely

separated into solenoidal and irrotational components. Such a division

may be made here, so the portion of the horizontal velocity in the dynamo

layer not expressible by a velocity field of the form _l = (1/Bp)V x Sl! r

may be expressed as

1
Z2 = - E" V_ (5.6)



where _ is a scalar potential. Generally

_3

v . B_2- V2_ _ 0 (5.7)

so such motion will be a kind which the magnetosphere is unable to follow,

Consequently_ a force of constraint in the form of a Lorentz force will

be exerted on the gas of the dynamo layer. That this is indeed the case

for a velocity field of the form _2 as defined in (5.6), and not fop one

of the form_l defined in (5.4), will now be demonstrated.

(a) Discussion of_l , the non-current producing velocity field,

A wind of for_ _i will produce a dynamo electromotlve force

vl x _-- vs1 (5.8)

which will drive a layer integrated current _, where

I_D= [_] . VS1 . (5.9)

Here [E] is a layer conductivity tensor and the subscript D on the current

vector signifies that it is the component of current driven directly by

dynamo action. In the case of symmetric dynamo action, the layer conduc-

tivities derived by Hirono (1952) and Baker and Martyn (195W) are appropri-

ate, as will be discussed in Chapter 3, and only the horizontal components

of (5.9) need be considered. The tensor conductivity has the important

property that the elements on the diagonal are positive. These are associ-

ated with the component of current in the d/rection of the applied electric

field, the Pedersen curr_nt.
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As a consequence of the divergence of the dynamo driven current

(5.9), an electrostatic field will be established which for the moment

will be represented as the negative gradient of a potential SI. It will

' will differ from S1 by no mopenow be shown that in the steady state S1

than a constant. In the steady state the divergence of the total current

!

is zero, so the electrostatic field driven current _ = - [E] • VS1

must he such that

o= v. (zD+_) = v. ([z] • v(sl-s_)) (5.10)

!

Consider the function S 1 - S I. If it is not simply a constant it

may be represented in the form of a contour map on the hemisphere, and

!

there must be some polntg line or area at which S 1 - S1 takes a maximum

!

value. There, the gradient V(S 1 - S I) must he inward over the contour at

the boundary of the maximum region. But then, since [_] has positive

elements on its diagonal, the current

._ + _ = [z] • v(sl - s'l) (5.n)

will have an inward component along this entire boundary, and will be

!

convergent. Thus, S1 and S1 can differ at most by a constant. Since

S 1 and S1 enter the equations only through its gradient, they may hence-

forth be used interchangeably.

(b) Discussion of_2 , the current producing component of velocity.

A wind represented by the velocity field_2 given in equation (5.6)

will give rise to a horizo, tal electromotive force

(_2 x B) h = 1 x V_ = -V x $1.p (5.12)-- -..p



45

which will drive a current

in the steady state the divergence of_ must be just cancelled by

the dive_ence of the current_ driven by the electrostatic field -VS 2.

Thus

0 = V • (_ + _) = -V . [Z] . (V x @21_r + VS 2) (5.1_)

The quantity V x $!r + VS2 cannot be zero except in the trivial case

where both terms are zero, so the current I_D +_ will generally be

non-zero, and a Lorentz force will act on the gas of the dynamo layer as

i_ moves with a velocity of fom_2.

(c) Discussion of Macda's treatment.

Havin E divided the velocity field of the dynamo layer into a cumrent

producing part _2 and one _lwhich produces no current, it is interesting

to examine earlier treatments of the dynamo theol,] of the Sq magnetic

variation. For example, Maeda (1955) assumed as did earlier workers, that

the wind system responsible for Sq could be expressed as a vector field

of the form

v = - v¢ (5.15)

where # will have only horizontal gradients.

B the resulting vector field
r

-B V$ = -B cos 8 V_
r p

If this is multiplied by

(5.16)
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(wheme B is the magnetic field at the pole) may be expressed as a function
P

of two scalam fields S1 and _ such that

-Bp cose V¢= - V x Sll_p - V_ (5.17)

Differential equations for S1 and $ ape demived in Appendix C.

note that the cuml of the left side of (5.17) may be w_itten

Here we

-B V x (V_ cosS)= B V_ x Vcos8 (5.18)
P P

which, not being zePo in genePal, indicates that Maeda's velocity field

cannot be expmessed in terms of the cumment pPoducing velocity field _2

alone. RatheP, it includes a component of wind which does not participate

in the pPoduction of cumment in the dynamo layem, and whose existence

cannot be deduced fmom the obsemvations of the Sq magnetic vaPiation.

Howevem, Maeda's solution based on the assumption that the wind is of the

foPm -re is no less valid than the mesults of a calculation of the wind

based on the assumption that it is of the form _2 = -V@/Bp. In each case

theme is an additional component of the wind about which the Sq magnetic

vamiation gives no infoPmation, and in each case this unknown component

= -B'Iv x SII , but not of the form_unknownof wind is of the fomm _l P v =

-V x RI. If one wishes to sepamate the wind velocity field into irrota-

tional and solenoidal parts one must considem both to contPibute to the

cumment system, and must somehow manage to divide the obsemved curment

system between the twobefomebein g able to campy out a solution.
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The above discussion indicates that the dynamo equations alone

cannot be uniquely solved for either the solenoidal or irrotational

component of the dynamo layer wind. All one can hope to obtain is a

solution for the irrotational component of the vector field Bray, unless

the equations of motion for the dynamo layer are included in the deriva-

tion to provide a relationship between the irrotational and solenoidal

components of v.



CHAPTER3

EFFECT OF SYMMETRIC DYNAMO ACTION

3.1 Motion of the Ma_netosphericPlasma Associated withSymmetric

Wind Systems

It was noted in section 2.5 that symmetric dynamo action gives rise

to electrostatic fields transverse to the magnetic field. As originally

pointed out by Martyn (1953), along with such electrostatic fields there

is established a motion of the magnetospheric plasma of the for_n_ =

- VS x _/B 2. In addition, there may be motion along the field lines, such

motion not being directly affected by the electromagnetic forces that are

dominant in the magnetosphere. Since symmetric dynamo action gives rise

to no currents in the direction of the magnetic field, the field lines

may be retarded as equipotential lines that lie on surfaces along which

the magnetospheric plasma must flow. Such motions are of the class that

is mequired by what has here been referred to as the constraints on magneto-

spheric motions. The purpose of the present section is to link the mag-

netospheric motions to the dynamo layer wind systems that drive them.

This may most conveniently be done by separating the dynamo layer wind into

current producing and non-current p_oducing components.

There is probably no need to discuss at very great length the magneto-

spheric motion associated with the component of the dynamo layer wind which

produces no current, for this component was originally introduced as being

consistent with the motions that the magnetosphemic plasma can undergo.

However, two things are perhaps worth melterating. First, if such a compon-

ent of wind does exist in the dynamo layer, in the steady state the magneto-

spheric material will also have such a component of motion. This is implied

_8
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in the derivation of section 2.5, which indicates that the electrostatic

potential produced by the non-current producing component of wind may be

considered to be equal to the stream function fop the vectoP field Brv_1.

The second point is that neither the magnitude, configuration, nor even

the existence of such a component of motion can be inferred from the Sq

magnetic vamiation without introducing the equations of motion for the

dynamo layer, much as Kato (1956) has done. However, the viscous stress

transferred by (and probably responsible for) the turbulent region below

the dynamo region must be included if such an approach is attempted. This

will first require determination of the shear field (or better yet, the

stress field) of the turbulent region over the globe, which will serve as

the boundary conditions for a rather elaborate form of the Navier-Stokes

equation. The alternative approach and perhaps the more reasonable one,

is to devise techniques for measuring the electric fields in the magneto-

sphere or what is the same thing, the motions of the magnetospheric plasma

above about 150 km. The part of the total magnetospheric motion arising

from the current producing portion of the dynamo layer wind may be de-

termined by means of the conventional dynamo theory applied to the Sq

magnetic variation, and extracted from the total. The remaining velocity

field will be the non-current producing component of motion in the dynamo

layer.

3.2 Motion of the Magnetosphe[e Associated with the Current Producing

Component of Wind in the Dynamo Region

The current producing portion of the dynamo layer wind, _2 =

- (I/Br)V _ has here been referred to as the component of dynamo layer

motion which the magnetosphere is unable to follow. However, such a



wind does produce a convection of the magnetospheric plasma. Indeed,

the effect here is a considerable one.

As there are no currents along the field lines, the layer conduc-

tivities derived by Hirono (1952) and independently by Baker and MaPtyn

(195_) may be employed, obviating the need to consider the vertical com-

ponent of the dynamo electromotive force.

in the fo_m of a tensor

5O

These layer conductivities are

[Z] =( Zee ZeAl (2.1)

where the diagonal elements are associated with the Pedersen conductivity

and the off diagonal elements are associated with the Hall conductivity,

all of which are effectively enhanced by (i) a vertical polarization field

arising from the inability of charge to flow vertically away from the

layer and (2) the inclination of the magnetic field, which makes the con-

ductivity in the north-south direction somewhat greater than would be the

case if the current were strictly transverse to the magnetic field, The

layer conductivities are discussed in greater detail in section 4 of this

chapter. Here we need only note that only the horizontal electric fields

need be considered to deterlnlne the current and that in the dynamo layer

the off diagonal conductivities are usually larger than those represented

by the diagonal elements (an exception to this occurs near the equator).

The dynamo electromotive force p_oduced by a wind _2 = -(1/Bm)V_

will have horizontal components

_2 x 1 B = 1 x V_ (2,2)--r p --P
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and will drive a Hall current, integrated through the layer,

._DH = _@X(I._ x V_) x --_l (2.3)

since _ has only a horizontal gradient. If the conductivities were unifom_

over the globe _H would be an irmotational vector field and would have

divergence ZSX V2@; with non-uniform conductivitY_H will have some

solenoidal component as well, but will still show considerable divergence.

In similar fashion, the Pedersen current would be strictly solenoidal were

the diagonal elements of the tensor equal to one another and unifor_ over

the globe, but in a more realistic model they too are likely to show

divergence. However, for simplicity of the present discussion let us

suppose that all these idealizations hold, as would be the case if the

magnetic field were vertical and the ionosphere unifor_a over the entire

globe. This would cause the diagonal elements Z@8 and ZXA to equal the

Pedersen conductivity Zp and the magnitude of the off-diagonal elements

Zsxto equal the Hall conductivity ZH, Then the divergence of the dynamo

ZHV2@ . In the steady state there will be an electro-driven current is

static field -VS 2 driving a current with equal and opposite divergence.

In our region of finite extent this implies that the irrotational compon-

ent of current driven by the electrostatic field will be equal and opposite

to the irrotatlonal component of the dynamo driven current.

Under the present idealizations the irrotational part of the current

driven by the electrostatic field will be that associated with the

Pedersen conductivity, so we must have

_pVS 2 = ZH VC. (2.4)
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The electrostatic field -VS 2 will be associated with magnetospheric plasma

motions

-_E = -VS2 x B_/B 2 = - (TH/r P) V# x B/B 2. (2.51

This equation deals with motion orthogonal to the field only. If a com-

ponent of motion along the field is included so that the motion is horizon-

tal (as might be approximately the case in the dynamo layer and lower

magnetosphere) we have

_h : (I/Br) l--r
1

x vs2 = + (ZH/Zp) (2.S1
r

But since Z%A > E we have
P

= - (EH/E p) I x-r Z2

l hl > Iz21 (2.71

This phenomenon has a less exotic analogy in sailing, where on a

reach _ a boat can move faster than the wind that drives it (although

modern racir_ yachts do not seem capable of such perfoz_n_u_ce_ see

Batchelor and Davies (1956)). In such circumstances the sail is set so

that the sail fomce has a considerable component in the fomward direction.

In the steady state the abeam component of the sail force acts against

the constraint established by the keel in the water and a steady state

velocity Is attained when the friction-like resistance between the hull

and water equals the forward component of force.

_The tack sailed by a ship with the wind coming just forward of the beam

or with the wind directly abeam or abaft the beam.
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In the magnetosphere the "set of the sails" is established by the

Patio of the Hall conductivity to the Pedersen conductivity, the greater

the ratio the relatively greater will be the component of Lorentz force

in the direction of unconstrained magnetospheric motion, or so to speak,

forward. The steady state is achieved when this force is just balanced

by the resistance to magnetosphemic motion produced by a friction-like

dma E against the neutral gas component in the dynamo region, represented

by the Lorentz force of the electrostatic field driven Pedersen current.

The above discussion applies to a rather over-simplified case. The

inclusion of the non-uniformity of the conductivities over the globe and

the inequality of Z88 and ZAA will complicate the problem and will modify

the pattern of motion established in the magnetosphere. However, the

additional complexities will not invalidate the general features of the

relationship between maEnetospherlc motion and dynamo layer winds here

discussed.

3.3 The Sq Current System

In section 2.5 it was demonstrated that symmetric dynamo layer winds

of the form _2 = - _ V_ can produce ionospheric currents, while those

ir

of the form _l = - B V x Sllr cannot, because only the former motion
r

acts to redistribute the earth's magnetic field. Here we continue to dis-

cuss the idealized case in which the conductivities are uniform over the

globe, and the direct conductivity (Pedersen) is the same in the east-west

direction as it is in the north-south, in order to gain insight into the

relationship between the fundamental process for the generation of current

and the kinematics of the wind system. Essentially the same discussion was

presented by Baker (1954) except that he assumed the causative wind to be

strictly irrotatlonal.
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In the case of a wind of the form v I - B

r

noted, the horizontal dynamo electromotive force

V x Sll_r, as already

54

v 1 x -rrlB = VS 1 (3.1)

is under steady state conditions everywhere cancelled in the dynamo layer

by the establishment of an equal and opposite electrostatic field -VS1,

so that there will be no current. On the other hand dynamo layer winds

1
of the form _2 = - _ V_ give rise to a horizontal dynamo electromotive

r

force of the forth

_2 x 1 B : - V x (3.2)--r r _l--r

which clearly cannot be cancelled by the irrotational electrostatic field.

The dynamo electromotive force will drive a component of current in its

own direction

IDp : ? 1 x V_ (3.3)p--r

and another component orthogonal to itself in the layer

_DH : ZH V_ (3.4)

Similarly, the electrostatic field -VS 2 will have components of current

in its own direction, and orthogonal to itself

•_EP : - Zp VS 2 (3.5a)

IEH : ZHI r x VS2 (3.5b)
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Under our simplifying assumptions _H and _p will be entirely irrotational

while _H and _p are entirely solenoidal. In the steady state we must

have no irrotational component of the total current, so _p must be -IDH.

ZH

VS2 = _ V@ (3,6)

Thus

and the total solenoidal component of current becomes

2 2
Zp + ZH

(3.7)

2Baker and Mamtyn (1954) have denoted (Zp + Z )/£p by the symbol £3, and

it is sometimes referred to as the Cowling conductivity. The important

point to observe here is that the two solenoidal components of current,

one driven by dynamo action and one driven by the electrostatic field

are in the same sense, hence the polarization of the layer serves to

augment rather than reduce the solenoidal component of the dynamo driven

current.

Aside from some modification produced by the non-uniformity of the

conductivities over the globe and by the change in the direct conductivity

with direction, it is this current which can be considered responsible for

the dominant antisymmetric component of the Sq magnetic variation, where

symmetry and antisymmetPy in the sense of section 2.4 is here intended.

3.4 The Layer Conductivities

Recent treatments of the dynamo theory (Hirono, 1952; Baker and

Mar_yn, 195_; Fejer, 1953) have all reduced the problem of dynamo action

in a three dimensional region to a two dimensional problem by introducing

the concept of a layer conductivity and an effective or mean wind. The

usual derivation of the laye_eon4uctivity relates the current density
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at any level to the horizontal component of the electric field by means

of 0hm's law with tensor conductivity and the additional condition that

there be no vemtical component of cumment at any level. In order to meet

this last condition the vemtical component of the electmic field is made

to assume a value such that it drives a vemtical cuPrent equal and opposite

to that driven by the homizontal components of the field. Since this con-

dition determines the vertical component of the electric field, the hori-

zontal CUrTents driven by this component ape also determined. This permits

the total horizontal cumment density to be expressed in terms of the hoPi-

zontal components of the electric field, the constants of pmoportionali%_

bein E the tensor conductivity fop an incPemental layeP. To find the total

current through the entiPe dynamo region, the cuPPent density is integrated

through height. If it is now assumed that the hoPizontal electPic field

is constant with height it may be taken out of the integral, leaving only

the conductivity inside. This integPal is then the layeP conductivity

which relates the horizontal e1ectric field, taken to be uniform through

the layeP, to the total hoPizontal cuPrent in the layeP.

The assumption made eaPly in the dePivation, that thePe is no vertical

component of current at any level, seems a difficult one to justify and

an impossible one to realize in genePal. This condition would require, in

the steady state when the cuPvent must be divergence fPee, the existence

of an electrostatic field _ = - VS capable of dPivlng a current system_

such that

v. = -v •

whePe_D is the curPent driven by dynamo action. Simultaneously, the

additional condition would have to be met



JPS = " JPD

where the r's denote radial components.
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(4.2)

Except in some special cases, such as that where the curPent system

of the electPostatic field is evemywhePe equal and opposite to that driven

by dynamo action _, it will be impossible to find a scalaP function S that

simultaneously satisfies both conditions. Thus, it is preferable to attempt

to avoid this assumption altogether.

Hines (1962,1963) has pointed to anotheP shoPtcoming of this tPeat-

ment, its disPegaPd of the fact that thePe may be appPeciable wind sheaP

and even PevePsals in the wind's diPection fPom one level in the dynamo

layeP to anotheP. HePe an attempt will be made to develop apparatus to

allow the discussion of the dynamo action of a stmatified wind while avoid-

ing the objectionable assumption discussed earlieP.

It is natuPal to Peduce the thPee dimensional dynamo pPoblem to one

involvin E only Two dimensions when we attempt only to explain magnetic

variations at gPound level as the integPated effect of cuPPents at all

levels in the dynamo layeP. The vePtical distPibution of the cuPPent den-

sity has little influence on the magnetic pePtuPbation, so that it is

convenient to deal with the pPoblem in terms of cuPPents, winds, and

conductivities integPated oveP all levels. Going in the PevePse diPection,

as Maeda (1955) and Kato (1956) did, one can haPdly expect %o deduce mope

than a single wind velocity field, charactePizing the layeP as a whole,

fPom the single vector field, the magnetic pePtuPbation at ground level.

Then, it is cleaPly advantageous to discuss dynamo theoPy in terms of

* This would require a wind uniform with helght of the foPm_l =

-(i/Bp) V x Sll. (see Chapter 2, section 5)
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integrated Quantities, so we here define the layer integrated current

Co,X) _ o(r,e,x) (rlr0) dr C4.3)

r0

where the integration is to be carried over a trapezoidal surface extend-

ing from a base of unit length at height r 0 somewhere below the dynamo

layer to one of length (rl/r O) _ i at rl, a height above the region of

dynamo action. The integration results in a two dimensional vector field

having three elements or components. The current density _ may be expressed

J = [a] • (vxB- vs) = [a] . z (4._)

where [o] is the tensor conductivity. In expanded form the above becomes

J.= O'oSo + al£l + (o2/B) Bx .El
(_.5)

where the electric field E has been separated into a component_ along

the magnetic field and another, _I' orthogonal to it. Thus the layer

integrated current will be a vector sum involving terms typified by

l

r 0

ol(r.e,X) Ele (r,e,X) dr (_.6)

where we approximate (r0/r 1) by one.

It is convenient to express the three dimensional fields [o], _ x _,

and VS in terms of a set of orthogonal functions. For the e and X

dependence surface harmonics will be employed, while the radial variation

will be expressed in terms of a Fourier series. For example, a scalar
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function F(r,e,_) may be thus expressed

(4.7)

F(r,e,l)= I[£ [fa(J,n, m)c°s JK(r-rO) + fb(J,n, m)sin JK(r-ro)]eimIp_ (c°s 8)

nmj

where K : 2_/(rl-rO) and where fa(J,n,m) and fb(j,n,m) are complex. Thus

equation (4.7) allows us to represent F(r,8,A) as a pair of three dimen-

sional arrays of complex numbers.

If another scalar function G(r,e,A) is similarly represented in

(j,n,m) space, the representation of the product F(r,e,A) G(r,e,A) requires

a convolution in (j,n,m) space, or said otherwise, requires multiplying two

expressions of the form given in (4.7) and the organization of the result-

ing expression into the specified form to give a representation of H(r,8,A)

in (j,n,m) space where

H(r,e,X) = F(r,e,_',) G(r,e,,_) (_.8)

However, in integrating such products over r we may use the orthogonality

of the functions cos jK(r-r O) and sin jK(r-rO) ; the integrated product then

becomes (q. 9 )

r 1

; ! m[ , )ei(m+m')_ m m'F(r,e,A) G(r,e,l)dr = _ I h'(n,m,n ,m' Pn(COse)Pn,(COSS)
/1 m t t

r 0

where

! ! !

h (n,m,n ,m ) = (rI tO) fa (O,n,m) ga(O,n' '-- ,m ) (4.10)

1 trot ! t
+ _ (rI - rO) _ [fa(J,n,m) ga(J,n ) + fb(J,n,m) gb(j,n ,m )3.

j:l
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However (4.9) may also be written

il F(r,8,l) G(r,e,k)dr : (r I- rO) Fa,o(8,_) Ga,O(e,X)

r 0

1
+ _ (r I- r 0) [ [Fa,j(8,k) Ga,j(e,k) + Fb, j

j:l

(#.Ii)

(e,l) Gb,j(8,k)]

where

Fa,](e'k)' -[ [ fa (j'n'm)eimlPm(c°sn 8)
n m

(4.12)

We here refer to the quantity defined by (4.12) as the jth co-

sinusoidal component of the radial spectrum of F(r,8,k). Similarly,

Fb,j(8_l) defined in the same manner will be the jth sinusoidal component

of the radial spectrum of F(r,8,k). Each component of the radial spectrum

can be considered as characteristic of the dynamo layer as a whole, and

as such, presents a convenient means by which the discussion of the dynamo

theory for a stratified layer can be presented.

An important property of this representation is that the integrated

products (4.6) will have magnitude only insofar as [a(r,e,l)] and E(r,e,l)

have the same components in their radial spectra. For example, E may

have some appreciable components in its radial spectrum that contribute

little to the integral,and thus little to the observable effects of dynamo

action simply because the conductivity [a] does not have corresponding

components in its radial spectrum. Generally, the Hall conductivity and

the Pedersen conductivity will have different radial spectra, and so one

might find that the conductivity tensor has, for example, a greater

Pedersen than Hall element in certain parts of its radial spectrum, and

greater Hall than Pedersen in other.
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By means of this representation the layer integrated current may be

expressed

I(8,A) : (rI- rO) [Oa, 0 (8,A)] . E O(8,k) (4.13)-- --a_

+ _ (r I- r O) Ua,j(e,X)] • E ,j(e,x) + [Ob,j(e,X)] • _,j(e,X
jl -a

and the components of the radial spectrum of the electric field may be

expressed in terms of the commesponding components of the radial spectra

of the wind velocity and the electrostatic field.

E a,j(%,A) = _,j(e,A) x B_.(e,A) - _a,j(8,A) (4.I#)

where_ is written to indicate that the gradient rather than the scalar

potential itself, is to be divided into radial spectral te_s, since

-_E_a,j(e'_)_ -vs .(e,x) (4.15)a,]

The current density may be separated into three components corres-

ponding to those of the electric field that drives it. That part of the

current driven by the dynamo electromotive force we will call _, that

driven by the component of the electrostatic field perpendicular to the

magnetic field we will call _(1), and that part driven along the magnetic

field lines by the component of electrostatic field in that direction we

shall call _({{ ). Because of the relatively high conductivity along the

field lines, the component of the electrostatic field in that direction

can be much smaller than the electric fields perpendicular to the magnetic

This may be seen by considering the radial component of the electrostatic

field. A slnusoidal component of the radial spectrum of S will give rise

to a cosinusoidal component in the radial spectrum of the vertical com-

ponent of VS.
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field while driving currents of comparable magnitude. Consequently, in

considering currents normal to the magnetic field we may, to good approx-

imation, neglect the existence of potential gradients along the field

lines and considem the field lines to be equipotentials. Then -VS(1),

the electrostatic field normal to the magnetic field lines, will vary

negligibly along the field lines as they pass through the dynamo layer.

Furthermore, although -VS(1) will vary in the direction normal to the

magnetic field, the amount of such variation along a vertical line as it

passes through the dynamo layer will not be very large over most of the

KloBe. The size scale of such variations in the horizontal direction is

the same as the homizontal scale of the wind systems from which they arise

and the vertical scale of a variation having a horizontal scale L will be

L tan X where X is the dip angle of the magnetic field. The wind systems

with which we will be concerned have horizontal scales of order lO 3 kilo-

meters, so the vemtical scale of such variations will become as small as

the few tens of kilometems thickness of the dynamo layer only within a

few degrees of the equator. Thus, over the greater part of the globe the

radial spectrum of -VS(±) may be taken to consist of only the ze_oth or

constant term, and the portion of the layer integrated current driven by

-VS_I) may be written

Is(l) = _(1) (r,e,x) dr (4.1a)

r 0

r 1f

= - _ [a(r,e,X)] dr • VS(±) (e,A)

o

= (r l- r O) [aa,O(e,X)] • E(1)Sa,O(8,A)
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The current density driven directly by the dynamoelectromotive force

may next be considered. In terms of the wind velocity, the dynamodriven

current is

JD : [a(r,e,x)] .5(r,e,X) xB(e,X)

= {_ [Ca,j(e,x)] cos jK(r-r0) • _ [Ob,j(e,x)] sin jK(r-r0) I .
• j

After multiplication the resulting terms will contain one of the three

following factors and may be replaced by a corresponding pair of factors:

(_.18a)

1 1

cos jK(m-r O) cos j'K(r-r 0) : _ cos (j+j')K(r-r 0) + _ cos (j-j')K(r-r 0)

(_.lSb)

1 1

cos jK(r-r 0) sin j'K(r-r 0) : _ sin (j÷j')K(r-r 0) - _ sin (j-j')K(r-r 0)

(_.18c)

1 1

sin jK(r-r 0) sin j'K(r-r 0) : _ cos (j-j')K(r-r 0) - _ cos (j+j')K(r-r 0)

If j = j' the factors (4.18a) and (4.18c) give

1 1
+. _ cos 2jK(r-r 0) (4.19)

while (4.18b) gives

1 sin 2jK(r-r 0) (4.20)2

If _D is integrated through the dynamo layer to obtain the contribu-

tion of the dynamo action to the layer integrated current, the terms

containing sinusoidal or cosinusoidal factors will contribute nothing,

since there is an integer number of cycles in the range of integration.
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In (_.19) only terms with the constant factor one-half (or one in the

case of j = j' = 0 where cos 2jK(r-r0)=l) will contribute to the layer

integrated current responsible for the Sq magnetic variation. This is

only another way of saying that the functions in terms of which the radial

distributions of conductivity and electric field are expanded are

orthogonal functions. However, we have here shown that the contributions

to the layer integrated current are from the constant terms in the radial

spectrum of the current density, and that these may be considered to be

distinct current systems, having current density uniform with height in

the dynamo layer. While the preceding arguments were made in terms of

the dynamo driven portion of the current, quite similar arguments hold

for the cumrents driven by the electrostatic fields. The total layer

integrated current may be written

i_(e,x) : JDa,O(e,X) + J(l)

mO

Sa,O(e,_) + J_(ll )Sa,O(e,X)i dr

= (r 1- tO) iJDa,O(8, )_) + J(i)Sa,O(8,)_) ÷ J_('_ )Sa,O(%,_)i

(4.21)

= (r l- r o) J_a,o(e,x)

The subscript, a, supplies no information about the zeroth component

of the radial spectrum, so a component such as _Da,0(8,1) will hereafter

be written _D,0(e,X).

It may be shown that the horizontal components of the constant term

in the radial spectrum of _ form a current system that may be considered

independent of the vertical component of the constant term as well as of

all other terms of the radial spectrum. Integrating the quantity V.J



65

through the dynamo layer in a manner analogous to that used to define

the layer integrated current, except that the integration is now carried

over a truncated conical volume having a square cross section of unit

amea at height r0 and a square cross section of area (Pl/PO)2 at rl, we

have

(4.22)

dr = + r sine B--f--+ r sine Be (J8 sine

r 0 r 0

rI r1

-2 I _ (P2jr)dr I
=r 0 _-_ +V •

r 0 r0

(l_\Jx + leJe)(r/ro)dr

=v

Here _ is the horizontal part of the layer integrated current and is

considered to be at height mO= since P is replaced by r 0 in the divergence

operator. The integral involving Jm is zero because the current density

is zero at r 0 and mI in the case of symmetric dynamo action. But since

in the steady state V.J = 0 everywhere, the height integrated divergence
e

must likewise be zero, from which it follows, since (r/rO)2_ l, that

v • --(q- ro) v • = o (_.23)

Suppose for a moment that Jo is a transverse current driven by the

combined effects of the dynamo elect_0motive force _x hand the trans-

verse electrostatic field -9S(I). Any vertical component of such a

current would lead to _[vemgenee at the lower (r = rO) and upper (r = r I)
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bo.,naing surfaces of the dynamo layer, and the growth of a layer

polarization field. In the steady state the layer polarization would

just suffice to drive a current along the field lines having an equal

and opposite vertical component to tha_ driven by the transverse electric

fields (v x B and -VS(I)). The transverse current produced by this

polarization field would be small and is here neglected, so we may consider

the polarization field to be directed along the field lines, denoting it

by -VS( II ) and the current it drives will be called J( II)S,O' However,
!

it is most convenient to separate J(ll )S,O into two parts, J (II)S,O and
!!

J (II)S,O" The first is associated with _9,0 so that

JrD,O = -J'(ll )rS,O
(4.24)

and the other is similarly associated with J(±)S,O.

!

Since J (If)S,O

is in the direction of the magnetic field, (4.24) requires that it have

a e component:

! !

J (11)8S,0 = J (tl)rS,O cot X = -JrD,O cot X (4.25)

and since JD is normal to the magnetic field

' 2

J (_1)es,o = JBD,O cot X. (4.26)

By means of (4.24) and (4.26), the combined current system _,0

!

J. (fl)S 0 may be written

+

!

JD,O + J (11)S,O : I&J_D,O + 1--8(1 + c°t2X) J@D,O (4.27)
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This last equation may be interpreted to indicate an enhancement of the

8 component of _D by the polarization of the dynamo layer_ it is a

result quite similar to those obtained by earlier workers, the only

difference being that we have here neglected transverse currents driven

by the vertical polarization of the layer.

Hereafter, we will be concerned only with the layer integrated cur-

rents, and so we will use the notation

(4,28)

and similarly for the current driven by the electrostatic field

z_,s = (r l- %) (J_(l)s, o + J_"(ll )s,o} (4.29)

where both of these current systems are entirely horizontal.

The condition that the dynamo electromotive force _ x _ and the

electrostatic field -VS(1) are both perpendicular to the magnetic field

allows the vertical component of the electric field to be eliminated from

the equation. When this is done the layer integrated current may be

written in terms of the horizontal electric field as

z..(e,x) = [_.a,o(e,x)] • ._a,o(e,x) (4.30)

l i _ (e,x)]._ (e,x)+ _ _ [£a,j (e'A)] • _a,j(e,X) + _ [Zb,j ,j
3

where --n3E'a,"is the horizontal part of -a,3E. (see(_.14)) and [Za,j(e,A)]

is the jth cosinusoidal component of the radial spectrum of the layer con-

ductivity tensor. This may be written
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(4.31)

(rl- r0) ,j(e,_) O2a,j(8,_)[Ea,j(8'A)] 2 ala
sin X sin X

\_ "o)sin X °2a'j(e'l) (rl- r0) °la'j(8'l)/

Here ala,j(8,A) is the jth cosinusoidal term in the radial spectrum of

the PedePsen conductivity and 02a,j(e_A) is the jth cosinusoidal ter_ in

that of the Hall conductivity. These are determined by the expressions

°la,O(8,A) (r I- mO)-i i I ol(r,@,A) dr

r 0

(4.32)

°la,j(8,A) il: 2(r I- r0 )-I Ol(r,8,A) cos jK(r-r 0) dr, j _ O

r0

alb,j(e,k) 1: 2(r I- r0)-i Ol(r,8,_) sin jK(r-r O) dr

rO

The layer conductivities derived by the earlier workers comrespond to the

zemoth or constant term in the radial spectrum of the layer conductivity.

Also the dynamo electmomotive force used by them is the constant radial

spectmal term of the present discussion.

While the techniques of this section provide a means for treatinE

the dynamo action of a stratified wind system, their application, beyond

rouEh estimates of the effectiveness of various terms in the radial

spectrzu, of the wind in pr_dueinE maEnetlc perturbations, must await a
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more adequate understanding of the distribution of winds in the dynamo

layer. The previous applications of the dynamo theory have attempted

either to deduce ionospheric current systems from assumed wind systems,

or conversely, to deduce the wind system from the current systems that

produce the observed magnetic perturbations, The latter course is no

longer open if one wishes to include the effects of a stratified wind

system, since only one wind system can be deduced from the single two-

dimensional layer cumrent systems that all analysis of the Sq magnetic

variation have to date produced. Only if the cux_ent system can be

separated into components attributable to various terms in the radial

spectmum of the wind velocity, or if it can be shown that only one radial

spectrum term is substantially effective, will there be a system of

equations that allows the winds to be deduced.

On the other hand, the dynamo theory, since the time when the aniso-

tropic conductivity of a partially ionized gas was first understood, has

been adequate, although perhaps a bit cumbersome, to treat the problem

of deducing a dynamo current system from a given distribution of winds

and conductivities. All that has been lacking is adequate knowledge of

these distributions. Hopefully, with modern rocket sounding techniques,

this information will in time become available.

3.5 Wind Sy_stems L CgrEgn; and Electrostatic Fields

If the dynamo layer winds and conductivities are known and have been

expressed in terms of their radial spectma, the curments and electro-

static fields produced by wind dynamo action can be computed. From

(4.30) the integrated layer current arising directly fx_m dynamo action

may be written



I--D=[ra_O] " _e,O x l__Br + I _<[Za,O] , v x 1 B--a,j --r r

70

(5.1)

+ [zb,j] • Zb,j x !rBr I

where for conciseness the B and A dependence is left understood. In gen-

eralI_D will have divergence , causing the growth of an electrostatic

field, -VS, until the current I8 driven by the electrostatic field has

equal and opposite diverEence to that of ID. At this time the total cur-

rent, _, will be solenoidal and expressible in terms of a current function

F. Thus, we may write

i + !6: vr (5.2)

: [Za,O] " (_a,O x --rlBr - VS) +

where we have used the fact that

dynamo layer.

j] " Za,j ÷ " Zb,j x 1 B• --IP

VS is essentially constant through the

Definin E [P]_ the invemse of [Za,O ],

[Za, O] • [P] _ [Za, O] • [Za,O]-I (5.3)

we may rewrite (5.2) as

-:[1]

(5.4)

[ l l

I : [Za, O] "_e,O + _ ; [P] ° ] • v . + • •j [Za,j --a,3 2 [ [P]J [zb,j] _, x is r

- [Za, O] • VS
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(5.S)

1 1

v = v + [ [P] " [Za,j ] " v + Z [P] • [Zb, j] •-- . --a,jeff --a,O _ _ -_b,j
J j

1

= _ [.([Ta,j] " _a,j + [Tb,j] " _,j
3

where [Ta, j] = [P] • [la, j] and [Ta, O] -- 2[i] and [Tb,0]_ 0.

permits the dynamo equation to be written

This

I = [Ea,0] " (_eff x 1 B - VS) (5.6)-- --'D r

Now, as discussed in Chapter 2, section 5, we may separate the effective

wind into a current producing, and a non-current producing component,

1 1

Yeff = - _ 9 x Sllr - F V@. (5.7)
r r

and finally write the dynamo equation

-_.zrx vr = [;a,0] • (_xv_- vs2) (5.8)

where VS 2 is the electrostatic field associated with the current producing

wind system. Being a two element vector equation with two unknowns, F and

$2, (5.8) can be solved. A differential equation in F alone can be obtained

by applying the tensor [P] to both sides of the equation and then taking

the curl to obtain

- V x I[P] • _Im x VF 1 = V x (It_ x V_), (5.9)
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This is equivalent to the equation solved by earlier workers (cf. Chapman

and Bamtels). An equation for S2 can be obtained simply by taking the

divergence of both sides of (5.8). Thus,

V • {[£a,0] • (l_p x V_ - VS2)I =0.. (5.10)

A third, not independent, differential equation relating the current

function r and the electrostatic potential S2 may be obtained by multi-

plying both sides of (5.8) by [P] and then taking the divergence of all

terms, This leads to

V . x vr} = v2s2. (5.n)

Until a model for the wind at all heights in the dynamo layer is avail-

able, equation (5.11) is the only one of the three equations having prac-

tical importance, and even its importance is rather diminished by the

fact that VS 2 is not the entire electrostatic field generated by dynamo

action.

One appmoach to solving these equations for one oP another of the

unknowns is ID expand the known functions in orthogonal functions and

consider the unknown to be similarly expanded. After performing the

necessary operations the coefficient of like functions can be equated to

evaluate the coefficients in the expansion of the unknown. This procedure

is followed here to obtain a solution of (5.11) for $2_ in terms of a

known r.

Equation (5.11) can be written (5.12)

1 a (p 1 ar 1 ar i a (p sin ear
r sin e al " AA_- PAe r sin 8 _-_C) ÷ r sin 8 ae el _ ao

I a2s2 1 a as 2

+ (sin 8 E )
r2sin28 aA 2 r2sin e ae
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B f (8,k) = sin 8 _ f (e,_)

D f (e,_) -=_f f (0,_),

(5.13a)

(5.13b)

and multiplying both sides of (5.12) by r2 sin 2 8, we may rewrite (5.12)

D (PAABr - PAe Dr) , B (PeABr - PeeDr) = (D2 + B2) S2 (s.Iw)

The form of the operators B and D will be determined by the basis chosen for

the linear vector space in which r and S2 ape defined. Hasegawa and Ota

(19h8) have already derived a representation for the magnetic potential W of

the Sq magnetic variation using as a basis the surface harmonic functions

cos mA pm(cos 8) and sin mA pm(cos e), and from this a representation of
n n

the current function r may be obtained. If

n

w(e,x)= Z [ (wm
n=O m=O a,n

cos mA + Wm pm (cos e)
b,n sin mA) n

(5.15)

the current function r is given (Chapman and Barrels, II, p. 531, 19_0) by

n

r(85A) - i0 = 2n + 1 (_o) n4_ [" n + I _ (wm
n=O m=O a,n

(5.16)

cos m_ + Wm sin mX) pm (cos B)
b,n n

where W (O,l) is the magnetic potential at the surface of a sphere of

radius a which is less than to, the radius of the spherical surface on

which the sheet currents are distributed. Thus, surface haz_nonics would

seem to be a likely choice for the basis of the representation. However,

it is desired to represent the resistivity tensors [P] in the same linear

vector space, and as indicated by (5.1g), products of the form Plk(8,X)

BF (O,A) must beperformedand then operated upon. Such a multiplication
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of functions in the spherical harmonic representation would require a

convolution involving, among other things, the representation in terms of

m t

associated Legendre polynomials of products such as pm (cos 8) Pn' (cos 8).n

Identities for such products have been worked out by Adams (1900), but

they ape exceedingly tedious. It is more convenient to perfor_ the multi-

plication with a different basis for the representation, as is discussed

in the following section.

_re3entations, T_:ansformations and O_t_r_s

Let us suppose a real function F(8,A) is expanded in spherical hat-

monics in the form

n i !
iml

plml(cos 8). (6.1)= [ [ em e
n n

n=O m=-n

where f-mn will be the complex conjugate of f_. The expansion co-

efficients fm may he arranged in a two dimensional array with the index
n

m determining the column and n, the row. The conjugate relationship

between f-m and fm permits the portion of the array with negatively indexed
n n

columns to be suppressed, but its presence must be understood when per-

forming certain mathematical operations. We will term such an amray the

(n,m) representation of F and symbolize it by F(n,m). Another represen-

tation of F(8,X) can be made using the functions sinlml8 cosJ8 in place

of the associated Legendme functions pm( cos 8).
n

The array F(j,m) will have elements f_ such that
3

OO _ °

FeB,A) = I I f_" eimA sinlmle c°s]e • (6.2)
j :0 m:-_

m

where again fj and f[mare3 complex conjugates and the index m will continue

to specify the column in which the element is located.
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Since (cf. Chapman and Barrels (1940) equations 17.I0, 17.19 and

17.20)

(6.3)

_2 - 8mO ) (n-lml)' I

pm (cos e) = sinJml8 . -

n (n+ Imi)'

1/2

I [[n-2-_]]

r;O

<2n-2r):(-z) r (cos e) n-lmi "2r /

2n r' (n- ]m[-2r)!(n-r).'

where 6mO is the Kronecker delta and the double brackets [[ ]] indicate

greatest integer, the transformation from the (n,m) representation to the

(j,m) can be effected by a transformation armay IT Iml ]

£(j,m) = IT [ml] ' F(n,m) (6.4)

with the Im[ superscript of T indicating that a different transformation

I

matrix [T Iml ] is necessary to transform each column of the representation

The tt-ansfor_nation matrix IT Iml ] will have elements T! ml given
]n

array.

by

T!ml=
3n

(n-[m[-3)/2
(n * ImJ + j)I(-1)

2n['{n- Iml-j)/2] !j'Oh+ Iml+j)/2]:
(6.5)

for n+lml÷_ even, j -< n-l=l

= 0 othez-aise

In the following we assume that an adequate representation of F(8,A)

is obtained with a finite number of terms k. Suppose that G(8,A) is

likew/se represented by G(j,m) and we wish to determine the (j,m)
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representation of the function H(8,A) defined by the relationship

R(e,x) _ r(e,x)c(e,x). (6.6)

In terms of the basic functions of the (j,m) representation this

maybe written

H(e,A) = I I e sin 8COS j I I gj, e sin 8cos 3 .
j=O m=-k I=0 ml=-k

Consider the four terms arising from the multiplication of the two

terms containing the coefficients _ and f_m3 by the two terms with co-

T _m !

efficients g_, and g_, . These will be
3 3

m' ei(m+m'>X Iml+ Im'l e)j+j'
_j gj, (sin 8) (cos (6.8a)

-m' ei(m-=' I"1+ !='! >J+J'_gj, )X(sin e) (cos e (6.8b)

f-m =, -_(_-m' lml+ Im'l _,j'
3 g_, e )_(sin e) (cos e (6.8c)

f-m -m' -i(m,m' Iml*lm'l >j+j'
3 gj, e )X(sin e) (cos e (6.8d)

Let us suppose that m > m' > O. Then ter_s (a) and (b) would give

contributions to terms of positive m index in H(j,m), the representation

of the product H(e,I). Terms (c) and (d) have negative index m and are

the complex conjugates of (b) and (a) respectively. Consequently they

may he suppressed as discussed earlleP. If, on the other hand, m' • m • 0

tel-ms (a) and (c) would contribute to the terms of positive index m while

terms (d) and (b), their respective complex conjugates, would be suppressed.

In the case of m = m' • 0 terms (b) and (c) would both contribute to the

m = 0 terms of H(j,m)_ (m) wo_id contm_bute to the tez_ns of index 2m, and
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(c), its complex conjuEate, would be suppressed• In the case where

m > m' = 0 there would be only two terms, one with eimAas a factom, and

the other with e"imA The foPmem contributes to the terms of index m

of the product and the latter may be suppressed. Finally, if m = m' = 0

only one term occurs and is a contribution to the m = 0 term of the

product.

Terms (b) and (c), those involving the multiplication of positive

and negative index m (we may assume m _>m' >_ 0 without loss of generality),

are not in the comrect form to be considered reruns of the (j,m) represen-

tation because they contain powers of sin 8 that are not the same as the

power of eiA . If m > m' we may write

(sin 8)m+m' = (sin 8)m-m' (i - cos 2 8)m' (6.9)

allowing (6.8b) to be rewritten

m ! !

' i(m-m')A )m-m' m ! 8)j+j'+2r
_j g_m e (sin 8_ _ (-l)r (mt'r)!r! (cos

r=O

(6.8b')

which is of the desired fona.

From the above discussion the kind of matrix multiplication necessary

to obtain the representation H(j,m) from the matrices representing F(j,m)

and G(jsm) may be deduced. This matmix product will be indicated by

H(j,m) : F(j,m) * G(j ,m) (6.10)

and will involve a product _ombination of each column of the matmix

F(j,m) with each column of G(j,m), and the addition of the result into

the propem column of H(j,m). We will here call each such combination a

columna_product.
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To obtain the columnar product of two column factors, one of the

columns is transposed into a row and is placed to the right of the other.

Then a standard matrix multiplication between the column and row is per-

formed

j010121000g1092
i fl flgO flgl flg2

f2 _f2g0 f2gl f2g2

(6.11)

and the columnar product formed by summing on the anti-diagonals, adding

together all terms whose component factors have j indices summing to the

same value. Thus, from (6.11) the resulting columnar product is

fogo _ (6.12 )
flg0 + f0gl

go + flgl + f0g2

/f2gl + flg2

f2g2

Note that it has (2j+1) rows where the columnar factors each had only j.

A columnar product of this kind is obtained from each paired combination

of columns of F(j,m) and G(j',m') and the columnar product is added to the

produot matrix H(j,m) in the m_m' column.

It is also necessary to take account of the suppressed columns with

negative index. This is best accomplished at the same time as the columnam

pr_d_cts involving th_columnamfaotors with corresponding m index ame taken.
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Let us suppose the columnar product of column m of P(j ,m) end column m'

of G(j,m) has just been added into the m÷m' column of H(j,m), and further

suppose m _ m'. The elements of column m' of g(j,m) are replaced by their

complex conjugates and the columnar product of this conjugated column end

the column m of F(j,m) is fo_med. Next a columna_multipllcation of the

columnar product just obtained, by the m' column of the matrix M(j,m) is

performed and the result added to the m-m' column of H(j,m).

The matrix M(j,m) is determined from equation (6.8b') and has elements

m given bymj

m (_l)J/2 m!m. :
] (ml_/2)!(j/2)! for j even, j_2m (6.13)

m
m. = 0 otherwise
3

In the case where mt_m the roles of the two columnar factors ape

reversed, so the m column of F(j_m) has its element replaced by their

complex conjugates. Also, instead of the m' column of M, the m column of

M is used. The result is then added into the (m'- m) column of H(j,m).

It is important to note that both procedures must be followed if m = m'

since two contributions to hl are required (see discussion following
3

equation 6.8).

Having developed the transformation from the surface harmonic (n_m)

representation to the (j,m) representation, and the proper method for

taking the convolutlon product of functions in the (j,m) representation,

we must next find the matrix representation of the operators B and D.

The operation D, which takes the derivative of a function F(8_A) with

_espect to A may be carried out by simply multlplying each element of

F(j,m) by the m index of the element and by i _ _ This may also be
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regarded as the result of performing a standard matrix multiplication of

each column of F(j,m) by a matrix Dm corresponding to that column, where

Dm = im[l] (6.14)

and [i] is the identity matrix.

The B operator takes the derivative of F(8,A) with respect to 8 and

Thusthen multiplies by sin 8.

B eiml sinlml8 cosJ8 : sin 8 _ (e imA sinlml8 cos j 8) (6.15)
38

= e sin e Iml + j) cos]+le - j cos]-lo

and the necessary operation is accomplished by the standard matrix multi-

plication of each column by a corresponding matrix B Iml where the jth

column of B Iml has elements (Iml + j) and -j in rows j+l and j-i respec-

tively, while all other elements of the jth column are zeros. There will

be a different matrix B Iml for each column of the (j,m) representation,

and B Iml as well as Dm, is diagonal with respect to the m index (that is,

an element in the mth column of F(j,m) contributes only to the mth column

of DF(j,m) or BF(j,m)).

This gives us the complement of operations and operators needed to

solve equation (5.1W). A solution for S 2 can be effected with the inver-

sion of the operator (B 2 + D2).

3.7 Undetected Zonal Currents and the Effect of Their Omission on Solutions

for the Electrostatic Field

Although in principle it is possible, by spherical harmonic analysis,

to separate the earth's field into parts of external and internal origin,

the portion of the earth's unvarying magnetic field attributable to external
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sources is not well known because of the limited accuracy of such analyses.

One possibly large external source of such fields is a remnant Pin E cuP-

Pent produced by the differential drift cf charged particles always trapped

in the maEnetosphere. However, here the possibility of a contribution to

the earth's unvaryin E field by currents in the dynamo reEion will be con-

sidered. In the case of symmetric dynamo action, such currents would have

to be zonal, as symmetric meridional current systems independent of lonEi-

rude would be diverEent and could not exist in the steady state. Such

zonal current systems, Eiving rise tc magnetic perturbations of some tens

of Eammas, miEht exist in the ionosphere within the uncertainty of the

determination of the component of field cf external oPigin.

The mechanism fop curTents with such a confiEuration certainly exists

as well. Consider the cu_Pent driven directly by dynamo action.

= [z0] • x

If [ZO] and_eff are expanded in sphemical harmonics and the indicated

multiplications caPmied out, the multiplication of terms of the same order

(index m) will Eive mise to terns of ordeP zero in the expansion for the

cumment. Consequently, besides the contribution from meridional cimcula-

tion in the dynamo megion combined with the zero order components of con-

ductivity, one can anticipate a sizable contmibution to the zero ordeP

component of curment from the combined effect of the large diurnal compon-

ent of conductivity and any diurnal component of the curment producing

pomtion of the wind velocity field. Similarly, matched higher order com-

ponents cf conductivity and wind can be expected to contmibute to the

zonal (and memidional) cumments as well. Any zero order memidlonal com-

ponent of (symmei-mic) cuPment would have to be balanced by an equal and
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opposite zero order meridional component driven by an electrostatic field,

and because of the large diurnal component of conductivity, such an elec-

tmic field can itself be expected to have a sizable diurnal component.

That this is indeed the case may be seen by referring to equation (5.14)

D(PI_ BF-P_ Dr) + B(Pe_ Br-Pe_ Dr) = (D2 + B2) S 2 (5.1_)

If the current function r has a zero order component in its surface har-

monic expansion and [P] has a large diurnal component, S2 will clearly

have a corresponding diurnal component, since the operators B and D do not

change the order of a term of the surface harmonic, while multiplication

by the large diurnal (m = l) term of [P] produces diurnal components from

the zero order term it multiplies.

From the foregoing discussion it may be concluded that in computing

the electrostatic field from the observed Sq maEnetic variation, there is

likely to be an important contribution to the diurnal terms of the electro-

static potential (and to other terms, as well) which is missed because the

magnetic fields arising from zonal cumrents cannot be easily detected.



CHAPTER q

EFFECT OF ANTISYMMETRIC WIND SYSTEMS

4.1 Antisyn_netric Dynamo Action

As was the case for symmetric dynamo action, it is possible to carry

out the discussion of antis),nmetric dynamo action entirely in terms of the

processes in one hemisphere, provided suitable terminations to the field

lines are introduced at the equatorial plane. As discussed in Chapter 2,

antis)nnmetric dynamo action will give rise %0 currents along the magnetic

field, but to no electrostatic field transverse to the field lines in the

equatorial plane. Such conditions are met by a short-circuit termination,

or in other words, by considering the equatorial plane to be filled by a

perfectly conducting sheet.

As a consequence of this, the electrostatic fields arising from the

divergence of the antisymmetric dynamo driven current need not grow suf-

ficiently large to drive a current system in the dynamo layer that cancels

the divergence of the dynamo driven current, as was the case with s_n_metric

dynamo action. Now the possibility exists for there to be currents outward

along the field lines from regions where the dyn_o driven currents converge

and inward where they diverge. Here it will first be demonstrated that for

wind systems of global scale these currents along the field lines will be

sufficient to provide a divergence-free total current system while driven

by electrostatic fields of insufficient magnitude to produce appreciable

current transve_e to the field lines. To demonstrate this, the resistea_ce

of a flux tube from the ionosphere to the equatorial plane will be compared

with the resistance in the ionosphel_e between a ring bounding the flux tube

83
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and the zero potential surface within the ionosphere, here taken to be a

concentric ring with radius twice that of the flux tube (see Fig. 3).

It is first necessary to compute the resistance of a unit tube of

magnetic flux extending from the dynamo layer to the equatorial plane.

The tubes of flux will increase in cross section greatly with increased

geocentric distance, so a unit tube of flux will be defined as one having

unit cross section at the height of the dynamo layer. The resistance of

an incremental length along the tube of flux will be

dR = Is (r) A(r'e_ -IdsO (I.i)

where R is the resistance, aO(r ) the conductivity along the field line

assumed uniform over the globe, A(P,8) the cross section of the tube of

flux, and s is distance measured along the lines of force. To obtain the

total resistance from the dynamo layer to the equatorial plane it is

necessary to integrate along the field lines.

I"

= le IOO(r) A(r,e)I (ds/dr)dr
R -i

r0

(1.2)

where the variable of integration is r, the geocentric distance, and

where r0 is at the dynamo layer and r , at the point where a particulare

field line intersects the equatorial plane. The cross section of a tube

of flux is inversely proportional to the magnitude of the magnetic

induction B, so we may write

A(r,8) : A(ro,8 O) B(ro,e O) / B(r,e). (1.3)
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J DISK

.--,.J TUBE

IONOSPHERE

Fig. 3 Geometry for the comparison of the relative magnitudes

of currents along the field line to the equatorial

plane and currents transverse to the magnetic field

in the ionosphere under antisymmetric dynamo action.

The resistance of the inner tube from the ionosphere

to the equatorial plane (Rtube) is compared to that
of the ionosphere between the inner and outer tube

(Rdisc).
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Making use of the assumption that the magnetic field is dipolar and that

the tube of flux has unit cross section at r0, we obtain

A(r,8) = (r/r0)3 (4r 0 - 3r 0 sin 2 80)½ (4r0_ 3r sin 2 80)-½ (1._)

Similarly, the dipolar property of the field can be used to obtain

ds/dr = (4r 0 - 3 r sin 2 tO)½ (_r 0 4r sin 2- r0)-½ (1.5)

Substituting these into the integral one obtains

(1.6)

(to/Sin2 O0) 1 rO 3 (_r 0 - 3r sin 2 OO) dr

R(rO' CO) = _0(_ _- /('4r0 - 3r 0 sin 2 80 ) (gr 0 - 4 r sin 2 e )
r 0 o

In Fig. 4 is shown R plotted as a function of 8 for three model atmo-

spheres, appropriate for noon, twilight and midnight, and for several

heights in the dynamo region. The conductivity a0 used here was computed

from model atmospheres of Prince, Bostick and Smith (1964).

Next the resistance within the dynamo layer may be estimated. Con-

sider the resistance between the bounding ring of the flux tube of radius

x0, and the outer ring (Fig. 3) which is taken to be at zero potential,

and to have a radius 2x0. The resistance of an incremental ring lying

between the two is

dRdisc : (2_halX)-i dx (1.7)



Fig. 4 The resistance of a magnetic flux tube having a square
meter cross section at the ionosphere. The resistance
between the I00, ii0, 120 and 130 km. levels and the
equatorial plane is plotted as a function of colati-
tude. Fig° 4a is for a model appropriate for noon
time conditions, 4b for twilight conditions, and 4c
for midnight conditions.
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where h is the thickness of the dynamo layer and oI is the mean

Pedersen conductivity. InteETatin E from x 0 to 2x 0 one obtains
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Rdisc = (2Whal)-i in 2 (1.8)

On the other hand, the total of resistance between the equatorial plane

and the circular region of the dynamo layer bounded by the inner ring is

Rtube - 2

_x 0

(1.9)

where R is the total resistance along a unit flux tube found from (1.6).

At middle latitudes the total resistance (from i00 km height to the

equatorial plane) of a unit flux tube at mid latitudes neam the noon

meridian is about 3 x l05 ohms, while the Pedersen conductivity is of

order 3 x 10 -4 ohms/meter over a height range h of scale 5 x 10 _ meters.

Equating Rdisc of (1.8) to Rtube of (1.9) and solving for x 0 it is

found that for structure in the dynamo layer having horizontal scale

greater than a few kilometers the conduction along the field lines to

the equatorial plane is more important than conduction transverse to

the field in the dynamo layer. The effectiveness of the conduction

along the field increases with the square of the horizontal scale size,

while horizontal scale has no influence on Rdis¢. Thus, for anti-

symmetric systems having horizontal scales of order 103 km there will

be negligible cua_ent driven transverse to the magnetic fields by the

electrostatic field.
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4.2 Currents Driven by Antisymmetric Dynamo Action

In the preceding section it was found that in the case of anti-

symmetric dynamo action the electrostatic field gives rise to little

current transverse to the magnetic field compared to that driven along

the field lines to the equatorial plane. For all practical purposes,

the electrostatic field driven current _ may here be taken to be

entirely in the direction of the magnetic field, while on the other hand,

the dynamo driven current, J-4)'is by its very nature orthogonal to the

magnetic field.

Substituting _ for _ in equation 4.22 of Chapter 3 gives an

expression for the total divergence of the dynamo driven current in the

truncated conical volume extending through the dynamo layer over which

the integration is carried.

l 2v. :v.

r 0

(2.1)

Any divergence of _ in the layer must be balanced by equal and opposite

divergence of _. Although to be precise it would be necessary to consider

the total divergence of the dynamo driven current in any such truncated

conical volume to be balanced by divergence of _ distributed in some

fashion among all the tubes of flux passing through the volume, we will

here consider such divergence to be matched entirely within the flux tube

intersecting the level r 0 in the same meter square area that forms the

lower base of the trn/ncated cone. The error in position introduced by

doing this will be small compared to The horizontal scale of the current

and wind systems of interest to us, except quite near the equator where

the magnetic field has little dip. With this approximation we may write
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sin X = V • I_Oh (2.2)

or by writing sin X in terms of e

1/2
(i + 3 cos 2 8)

JE = V " I_Dh (2.3)
2 cos e

The direction of JE will be downward along the field lines toward the

base of those truncated conical volumes in which there is positive diver-

gence. The current density passing through the equatorial plane on a

field line that intersects r 0 at e will be denoted Jeq(e,A) and is given

by

Jeq(e,A) = {Be(e)/Bo(e) t JE(e,X) (2.4)

sin 6 8

2 cos e
v •

Here {Be(B)/Bo(e)} is the ratio of the magnetic induction (and thus the

inverse ratio of the area of the flux tube) at the point where a field

line crosses the equatorial plane to that at the point where it inter-

sects the level r O.

The current along the field lines may next be related to the two

kinds of wind systems that have previously been referred to as the

current producing wind system and the non-current producing wind system.

As already noted, in the antisymmetric case both of these wind systems

produce current and contribute to the Sq magnetic variation.

In terms of the components of the horizontal wind, the horizontal

components of the dynamo driven current may be wpitten
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_Dh = _-e (ClVlBr + c2B2rvs/B÷ l--i (c2vlB - clVSBr) (2.s)

wh ere

= [g] • v x i B

g88 : gXl = Cl

gsl = c2 sin X

gl8 = - c2/sin X •

Note that this conductivity differs from the tensor conductivity for

symmetric dynamo action because the vertical current is not impeded.

As was done in deriving the layer conductivities, the tensor [g] and

wind velocity _ may be expanded in terms of their radial spectra, and

the inte_ated layer current may be written

I--Dh = [Ga,o] " _,0 x 1 B

1

+ _._ [G,j]a " v . x i B• --a,3 -_ r
]

(2.6)

1
+ _ [ [Gb,j] " _b,j x 1 B• --_ r

3

= [Ga,0] " _eff x _irBr

where the effective velocity _ff for the antisymmetric case is given

by the equation

1 [Ga,o]_ 1-_eff = _e,O + _ [ • [Ga,j] • v° --a_j
]

1 JIG _]-I ] .
+ a,o " [Gb,j  b,j"

(2.7)

The portion of _eff of the form v1 = (I/B r) 1

current

x V_ will produce a



Jeq(e,A) : {(sin 6 e)/(2 cos e)} v • [Ga,o] • V_
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(2.9)

Similarly, the portion of _eff of the form v_2 = - (I/Br)V # will

give rise to a layer integrated current of the form

: [Ga,0] "

and to a current through the equatorial plane

(2.10)

Jeq(e,A) = {(sin 6 8)/(2,cos e)} ? • [Ga, O] • i__ x V_ (2.11)

These equations may conveniently be treated in terms of the (j,m)

representation in a manner generally similar to that discussed in section

3.6.

4.3 Magnetic and Dynamic Effects of Antisymmetric Dynamo Action

Antisymmetric dynamo action, while giving rise to no motion of the

magnetospheric plasma, will however produce two effects having some geo-

physical significance. One of these is a minor effect on the dynamics of

the atmosphere at the dynamo layer, represented by the Lorentz force J x B

associated with the antisymmetric current systems. Chapman and Barrels,

Vol. II (1940) list the coefficients of the spherical harmonic terms for

the solar daily variation of the magnetic field. Among the terms

attributable to antisymmetric dynamo action (listed by Chapman and Barrels

1
as the solstitial semi-differences _ (N-S)) are terms having magnitudes

1
of order _ those of the terms arising from symmetric dynamo action.

Correspondingly, their Lorentz force in the dynamo layer will be about

one third that of the symmetric component, or about one third newton/square



93

meter column. Although this force seems to be smaller than others

present in the dynamo layer, its interpretation is nonetheless interesting,

for it may be considered to be a force transmitted from one hemisphere to

the other by the hydromagnetic action of the magnetosphere.

The second effect is an antisymmetric distortion of the magnetic

field, which may be thought of as a twisting of large magnetic flux tubes

arising from the equal but opposite forces exerted on them where they

pass through the dynamo region. This phenomena would have a small effect

in changing the relative positions at which any given field line inter-

sects the earth, causing a displacement of the geomagnetic conjugate

points from the position calculated using an average model of the main

field. Such displacements will be greatest for field lines emanating

from the polar region, since these field lines are within the magneto-

spheric tail and thus have a great enough extent that the twisting can

produce a somewhat more appreciable angular displacement.

Consider a ring in the dynamo region that forms the equatorward limit

for the portion of the dynamo layer intersected by the field lines that

connect to the magnetospheric tail (see Fig. 5). Let us suppose that an

antisymmetric meridional current driven by dynamo action passes into (or

out of) this ring and that this current has a layer integrated density

of about 5 amperes per kilometer. The total current passing into (or out

of) such a ring, which we will here approximate as being the 75° circle

of latitude, will be

5 x 2w r 0 sin 15 ° : 5 x 104 amperes (3.1)

All of this current must pass upward (or downward) along the field lines

of the magnetospheric tail. Consequently, for any cross section through
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the magnetospheric tail we must have

_ H" ds : I V xH " da = I J " da = 5 x I04amperes_m (3.2)

where da is an elemental area of the cross section and the integral on

the left is to be carried over the entire boundary of the cross section.

We will assume that the cross section of the tail is circular with a

radius of i0 earth radii and that the magnetic induction in the tail is

3 x 10 -8 webers/m 2 or 30 gammas. (This last quantity has been measured

by Ness (1965) while the radius for the cross section is that which when

combined with the 30 gammas field strength accounts for all the magnetic

flux poleward of the 75° latitude circle). Dividing _ _ • ds by the

circumference of the cross section of the tail and multiplyin E by the

magnetic permeability of free space _0 = 4_ x 10 -7 henry/m, one arrives

at a mean value for the perturbation of the magnetic field of the tail

produced by the postulated 5 x i0 g amperes of antisymmetric dynamo

current. Thus

AB = g0 _ _.ds/ 2_ R = 1.6 x i0 -I0 webers/m 2 (3.3)

= 0.16 gammas.

and so in addition to the 30 gammas magnetic induction along the tail,

there would be a con_onent around the tail of about 0.16 gammas, or about

one part in 200. Consequently, if the magnetospheric tail has a length

of i00 earth radii, the field lines near the surface will wrap around

the tail about one half an earth radius, or put otherwise, the surface

field will twist through about 3° over its length. Such twisting would

correspond to a displacement of the conjugate points of about 160 km,
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this being the sumof the two antisymmetric displacements occurring in

the two hemispheres. Other things being held constant, the displacement

of the conjugate points will be directly proportional to the antisymmetric

current, the length of the tail, and the radius of a cross section through

the tail, and inversely proportional to the total magnetic flux through

such a cross section of the tail.



CHAPTER5

MOTION OF THE MAGNETOSPHERIC PLASMA

5.1 Motions of the Magnetospheric Plasma Produced by Dynamo Action

Many conjectures have lately been made regarding dynamic processes

in the magnetosphere and motions of the magnetospheric plasma. (cf.

Piddington (1960), Axford and Hines (1961) and Fejer (1964)). Aside

from the motion of the plasma associated with the earth's rotation, most

of these have placed the greatest emphasis on magnetospheric motions pro-

duced by forces having their origin in interplanetamy space. It has also

been recognized that the motion of the magnetospheric plasma is at least

in part determined by the electrostatic field produced by the dynamo

action of winds in the ionosphere. Hines (1963) has already made esti-

mates of the flow patterns for the magnetospheric plasma produced by the

superposition of the Sq electrostatic field on the electric field associ-

ated with the earth's rotation. The model for the electrostatic field

he used is one suggested by Martyn (1955), obtained by assuming that the

wind producing the Sq magnetic variation can be expressed in terms of a

simple diurnal wind potential of the form @ = @o sin2e sin _ and that the

conductivity can be adequately represented by considering the electron

density uniform over the earth.

A better estimate of the electrostatic field associated with the

current producing component of the symmetric wind may be obtained from

the work of Maeda (1955). Using the surface harmonic analysis of the

magnetic potential of the Sq field and a conductivity model that varies

over the globe as a function of solar zenith angle Z of the form (i +

2.00 cos Z + i._6 cos 2 Z) he solved for the electrostatic potential and
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the wind velocity potential.

is here of interest to us.

98

It is the electrostatic potential which

Neglecting the inertia of the plasma, the

velocity v of the magnetospheric plasma is given by

- VS x B

v = (i.i)

-- B2

where S will be constant along the highly conductive magnetic field

lines. Since - VS is perpendicular to the surfaces of constant S and

since _ is perpendicular to both _ and -VS, the surfaces of constant S

intersect the surfaces orthogonal to B to form the lines of flow for the

velocity field_.

Maeda (1955) expresses the electrostatic field in terms of diurnally

and semidiurnally varying vectors (or in our non-rotating point of view,

vectors that undergo one and two cycles of variation over 360 ° of

longitude), given at i0 ° increments of latitude. Let E and S be the

electrostatic field and its potential due to the dynamo action. To derive

the electrostatic potential the equation

E = -VS (1.2)

can be expmessed in spherical coordinates

1 _ S(8,A) (1.3)
Ee (e,X) = T0 _e

1 a s(e x)
E_ (e,_) : - r0 sin e _-'/ '

From (1.3) we can write

e

S (e,0) = - r° I Ee (x,0) dx + S(0,0)

0

(1.4)

(l.5)
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where x is the variable of integration. An estimate of the latitudinal

variation of S along the midnight meridian can be obtained by integrating

by Simpson's rule using the given values of E8(8,0). Equation (1.4) can

be integrated more directly:

i

- r0 sin 8 I EA (8,x) dx ÷ S(8,0) (1.6)S(8,I)

0

= r 0 sin 8 Aly(8) {cos(_ + ely(8)) - cos ely(8)}

1

+ _ r 0 sin 8 A2y(e) {cos (21 + a2y(8)) - cos e2y(e)}

+ s(e,0)

where Aly(8) , ely(e) , A2y(e) and a2y(e) are given by Maeda (1955).

To the electrostatic potential derived above we must add the electro-

static potential associated with any other non-current producing iono-

spheric wind systems which we have reason to think exist. There is one

such wind system of great importance, that associated with the earth's

rotation. By wind we mean the rotational motion of the atmosphere that

is observed when viewing the earth in a non-rotating reference frame,

so what we are here referring to as a wind would, in the eyes of a

rotating meteorologist, be considered a motionless atmosphere. The

electrostatic potential associated with this motion is that which would

exist if the "wind" dynamo electromotive force were everywhere just

balanced by the electrostatic field. Thus, we have

= "vsR = -XR x £ (1.7)
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where _R = _I r0 _ sin 8 and where _ is the angular velocity of the

earth's rotation. It is adequate for our purpose to consider only the

e component of the electrostatic field, since it is possible to derive

the electrostatic potential from it alone. Thus the 8 (southward) com-

ponent of _ is

where B
P

ERe = - vl Br = r 0 _ Bp sin e cos 8
(1.8)

is a constant (about 6 x 10 -5 webers/m2). Equating the above

expression for ER8 to the northward component of the gradient of the

electrostatic potential and integrating from 0 (the north pole) to any

colatitude e, one obtains

2

r 0-_ Bp cos 2e + s, (1.9)
SR :

where S' includes some constants of integration which can be taken to be

zero.

Assuming for the moment that these are the major components of the

electrostatic field, the mapping on the ionosphere of contours of constant

electrostatic potential can be written

S(O,e,l) = SR(e) + S(e,A) (1.10)

The field lines through these contours generate surfaces of constant

electrostatic potential in the magnetosphere along which the magnetospheric

plasma flows.

Unfortunately, the longitudinal variation of the electrostatic

potential is too small to enable the equipotential surfaces to be drawn

from the functions evaluated at i0 ° latitudinal increments as has been
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obtained above. However, an estimate of the flow lines can be madeby

meansof a linear interlDolution of the potential in the intermediate

intervals: This has been done, resultinE in Fig. 6. The polar diagram

corresponds to the north pole, with latitude shown on the radial

coordinate and longitude, measured in hours from the midnight meridian,

shown on the azimuthal coordinate. It must be remembered that these

flow patterns are quite crude estimates of what might be expected to

result from the dynamo action in the ionosphere. Two additional electro-

static field components of unknown configuration and magnitude are almost

certain to exist. These are the electrostatic field associated with any

undetected zonal current system and the electrostatic field associated

with those parts of the wind velocity field that produce no current.

Consequently, Fig. 5 should be considered an order of magnitude estimate

of the deviation of The magnetospheric plasma flow from simple rotation.

5.2 Role of Dynamo Action in Determining the Configuration of the

MagnetospheFe

The magnetosphere is sometimes discussed in terms of a corotating

region in which the magnetospheric plasma daily undergoes approximately

one rotation about the earth, and a non-coroTating region in which the

plasma may still move concordantly from one field line to another, but

the pattern of motion is such that streamlines near the equatorial plane

do not enclose the axis of The earth.

For the moment let us assume that the electric field in the magneto-

sphere arises entirely from the dynamo action associated with tidal motion

and the earth's rotation. If this were The case, the surface bounding

the corotating region, since it is by definition a stream surface (i.e.

a surface on which lie stream lines of The magnetospheric plasma), must
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Fig. 6 Intersection of magnetospheric equipotential

surfaces with the ionosphere. The equipo-

tential surfaces represent the electric field

obtained by combining the electrostatic field

produced by tidal motions responsible for the

production of the Sq magnetic variation

(Maeda, 1955) with that associated with the

daily corotation of the magnetospheric plasma

about the earth.
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correspond to a surface of equipotential of the dynamo induced

electrostatic field. Consequently, any asymmetry of the dynamo induced

electrostatic field will produce an asymmetry of the corotating region

of the magnetosphere. In particular, the 5 to i0 ° displacement of the

equipotential surfaces (see Fig. 6) toward the night side would cause

the corotating region to show a contraction of about 5 to i0 ° on the

nightward side. Similarly, the streamlines for the material in the non-

corotating region would lie on other equipotential surfaces which inter-

sect the ionosphere at higher latitudes. Whether or not the asymmetry

of the corotating region exceeds the 5 to i0 degrees produced by the

dynamo action of atmospheric tides depends upon whether or not there

exists additional electric fields of external origin. Any such electric

field would produce ionospheric currents and give rise to observable

magnetic perturbations. Nagata and Kokubun (1962) report just such a

magnetic perturbation, which they have designated Sp. The variation
q

occurs most strongly in the summer hemisphere, there having a magnitude

of order 150 gammas in the H component, or about 3 to 5 times that of the

low latitude $q, and persists on even quite quiet days. The current

system diagrams shown by Nagata and Kokubun suggest that the Sp current
q

system is largely confined to the polar region. If the electric field

which drives the Sp current system is indeed entirely contained within
q

the polar region, (i.e. the region connected to the non-corotating

magnetosphere) the dynamo induced electric field might continue to be the

most important influence in determining the configuration of the magneto-

sphere during magnetically quiet times. On the other hand, if the Sp
q

electric field extends into the corotating region, it would not only

influence the configuration of the corotating region, but might also
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contribute to the low latitude Sq current system, a current system now

generally attributed solely to dynamo action. Thus, it is important to

obtain a more thorough understanding of the magnetic variations in the

polar regions, especially those that take place on the magnetically

quietest days, in order to better understand the processes that shape

the magnetosphere.

While it is difficult to determine just where the surface bounding

the corotating region does intersect the ionosphere, there is some

indication in the observations of energetic electrons trapped in the

geomagnetic field. It has been observed by Freeman, Van Allen and Cahill

(1963) that the outer limit of the region in which > 40 key electrons

are observed neap the equatorial plane corresponds closely to the outer

boundary of the corotating region. Correspondingly, a poleward limit

to the region where trapped 40 kev electrons are found is observed at

heights just above the ionosphere. A set of isointensity contours

illustrating this poleward limit has been obtained by Frank, Van Allen

and Craven (1954) and is shown in Fig. 7. There is considerable

similarity between these isointensity contours and the equipotential

surfaces based on Maeda's (1955) calculation of the dynamo induced

electrostatic field. However, this similarity could be largely

fortuitous, and should be interpreted with caution. Aside from the

fact that Maeda's calculation does not give the entire electrostatic

field, it is most important to point out that the equipotential surfaces

are stream surfaces for only the thermal component of the magnetospheric

plasma, that part which does not have an appreciable drift motion arising

from the gradients of the magnetic field and curvature of the field

lines. More energetic I_art/cles (> i kev) will have an appreciable
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Fig. 7 Isointensity contours for trapped electrons with

energies greater than 40 key. Local time is

plotted azimuthally and invariant latitude (A) is

plotted ra_ially. The intensity of trapped

radiation falls off rapidly with increased

latitude, suggesting that the boundary of the

corotating (inner) portion of the magnetosphere

occurs near these contours. From Prank, Van Allen

and Craven (1954).
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component of motion associated with the geometry of the magnetic field,

and their total drift motion may be expected to follow paths departing

appreciably from the equipotential surfaces.

In the absence of electric fields within the magnetosphere trapped

particles of all energies would dr_ft at different rates along surfaces
m _

¥

constant integral invariant (_ 41 - B/B m ds where the integral is
of

m

taken between points where the particle miPrors). The angular velocity

with which a particle with energy W drifts along this surface is given

by

= 6 W r f(a)/(0.32 er_) (2.1)
_a e U

where e is the charge of the particle, r 0 is the radius of the earth,

and r is the equatorial geocentric distance of the particles orbit, all
e

in emu. The function of the particles equatorial pitch angle _ is given

by Hamlin et al. (1961) as approximately

f(a) = 0.35 + 0.15 sin a . (2.2)

With appropriate quantities substituted, (2.1) becomes

ma : (re/tO tO) W revolutions/day
(2.3)

where W is in key. Thus, _ % 5 key particles at eight earth radii would

drift around the surface of constant integral invariant about once per

day.

Since the total drift velocity of particles will be the sum of the

drift produced by the electric field and that determined by the

configuration of the magnetic field, the degree to which a particle
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drifts along an equipotential surface, or along a surface of constant

integral invariant may be estimated by comparing the magnitudes of the

two drift velocities. The electric field drift is such as to produce

one rotation per day about the earth. Consequently, particles trapped

near the boundar,y of the corotating region ( 8 earth radii) having

energies much less than 5 key will follow the equipotential surfaces

while particles with energies large compared to 5 key will tend to

follow the surfaces of constant integral invariant.

It has been estimated by Malville (1960) that the distortion of the

geomagnetic field by the solar wind might account for as much as a 2°

shift of the radiation belts toward the night side. This estimate

receives support from Williams and Mead (1965) who discuss a nightward

displacement of only 2.5 degrees for the isointensity contours of >280 key

electrons during magnetically quiet conditions. They further present

a new calculation of the effect of field distortion based on the recent

IMP satellite magnetometer observations of Ness (1964), which again pre-

dicts a displacement of only a couple degrees. Since 280 key electrons

will be little influenced by electrostatic fields of the magnitude

discussed here, the 2.5 ° displacement observed by Williams and Palmer

(1965) indicates the asymmetry of the surfaces of constant integral

invariant. On the night side the cut off occurs near 67° , the same as

that for the _0 key electrons. However, on the day side this limit occurs

about 5 degrees equatorward of that reported for the 40 key electrons.

This, along with the observation in both cases that the cut off is more

sharply defined on the night side, suggests that the poleward limit is

actually established on the night side and the day side limit only

represents the dayside position of the most poleward particle drift path
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that does not intersect the boundary of the region of stable trapping.

Thus, if the poleward limit of the radiation belts on the night side

corresponds to the boundary of the corotating region, the boundary on

the day side can be expected to be somewhat poleward of the limit of

trapped radiation (see Fig. 8).

We may now consider the question of whether the 5 degree greater

nightwa_d displacement of the >40 key electron isointensity contours

reported by Frank, Van Allen and Craven (1964) can be accounted for by

the effects of dynamo induced electrostatic fields. Noting that 40 key

electrons will drift around the earth about 8 to 9 times per day, it

seems unlikely that the eight degree asymmetry of the equipotential

surfaces can account for more than i0 to 20 per cent of their additional

nightward displacement.

There are several possible interpretations of this discrepancy.

First of all, there may be an additional electric field of external

origin which gives rise to the unaccountable part of the nightward dis-

placement of the 40 key trapped radiation. A second possibility is that

the results of Frank, Van Allen and Craven (1964) are partly indicative

of storm time conditions. In their analysis no separation of the data

was made according to magnetic activity, whereas Williams and Palmer

(1965) have found that even 280 kev particles can show an additional

2 to 3 degrees nigh_:;ard displacement under disturbed conditions. A third

possibility is that the isointensity contours do not correspond to the

ionospheric intersection of the surfaces along which 40 kev electrons

drift. This might be the case, for example, if acceleration processes

were always taking place near the boundar_ of the corotating region, as

suggested by O'Brien (1963).



Fig. 8 Relative positions of the boundaries of the
regions in which 280 kev particles, 40 kev
particles, and thermal particles are trapped
in the magnetosphere. It has been assumed
that the limit is imposed on the nightward
side where the corotating region has been
contracted as the result of day-night
asymmetry in the magnetospheric electro-
static field.
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Since we are here largely concerned with the electric fields that

exist in the magnetosphere, we will examine the first of the above

mentioned possibilities, that of an electric field of origin other than

dynamo action. In order to account for the displacement of the 40 key

electron isointensity contours the electric field must be diurnal, and

must be of sufficient horizontal scale to cover the polar cap down to

about 60 ° latitude. It must have a magnitude of 5 to 10 times that of

the Sq field, and finally, it must arise from an accumulation of positive

charge on the nightward side in order to give rise to the observed night-

ward displacement of the trapped radiation.

Any electric field of external origin must give rise to currents in

the ionosphere and to observable magnetic perturbations. At high

latitudes there are three kinds of magnetic perturbation in addition to

that arising from the dynamo action. These are the polar electrojet, the

dayside agitation, and the quiet daily variation Sp.
q

The intermittent nature of the polar electrojet immediately rules it

out as a possible explanation for the nightward displacement of the 40 key

electron radiation belt, unless the displacement itself is largely

intermittent in nature. Assuming that the 5 to 7 degree displacement

persists even during quiet times, the polar electrojet cannot account for

the effect. Similarly, the dayside agitation is not sufficiently

systematic to account for the displacement.

The Sp magnetic variation would seem to be the only observational
q

evidence of an electric field with many of the necessary characteristics.

The Sp current system deduced by Nagata and Kokubun (1962) is diurnal and
q

covers the polar region down to about 65 ° latitude. Furthermore, it is
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of the required order of magnitude. The only discrepancy seemsto be

that if the current is to be considered largely a Hall current, the

positive accumulation of charge associated with the Sp current system
q

is on the morning side rather than on the night side as would be required

to explain the displacement of the radiation belts.



APPENDIX A

DERIVATION OF THE CONDUCTIVITY OF A PARTIALLY IONIZED GAS,

WITH THE EQUATION OF MOTION OF THE NEUTRAL CONSTITUENT INCLUDED

It is assumed here that the ionospheric and magnetospheric gas consists

of three kinds of constituents, the neutral particles, positive ions and

electrons. Their quantities are indicated by suffixes, n, i and e,

respectively. The gas is assumed to be neutral as a whole, so that ne =

n i =np; the suffix p refers to the ionized gas. Then the equation of

motion may be written fom each constituent. Following Schluter (1951) and

Watanabe (1957), we have

_v

On ___ + nnnp een(_n - -_v) + nnnp ein(_n - --Iv')= -Vpn (i)

2
Pe _ + np eie(_e - v_i) + nnn p =en(_e - _n ) = (2)

- Vpe - enp (E_ + -eV x _B)

_V.
--i

Pi _T ÷

2
n _. (v. - v ) ÷ n n
p le --i --e n p (vi-v) =ein -n

- Vpi + enp (E_+ --zv"x _B) (3)

where pi = min , pe = m n and Pn: m n . Here the interaction betweenp ep nn '

the neutral particles and the charged particles is expressed in terms of

a sort of friction, so that it exerts a force which is proportional to the

difference of their velocities, namely (_n - -_v) and (_n - v i) ; the

coefficient& of the proportionality are given by

m. m
a. = v. 1 n
in in

Pi+Pn (4)
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(5)

Similarly, the interaction between the positive ions and electrons are

expressed by a force which is proportional to ([i-Ze) with the coefficient

m. m v. m. m
_. : _. 1 e = le 1 e
le le

Oi+Oe n m.+mp i e

(6)

Introducing the following quantities,

J-en (v. - v )
-- p --i --e

(7)

and

we have

1

v : -- ( + ) Pp P-+Pe
--P Op PiVi Pete ; :

1

v : --(pn_.n + )-- p Pp-_-p ; p = On+P p

P

_A : --nV-V_p : --Pn (_-v)

av

p :JxB_- vp

av

On--n : a(_9-_n) + abJ- Vpn
at

v °(I-pp bo _ + -- _-

P

+J=

c0 (E + v x B + b'J x B *

n c,
n en
ea VPi

n _.
n In

ea VPe

(8)

(9)

(io)

(Ii)

(12)

(13)



where

a=nn (s. + _ )
p n an en

b --

nn (Pe ein - Pi Sen)

eapp

i14

(14a)

(14b )

Pe Sen - Pi Sin n
b' = n

Pp a'_"
(14c)

2
e a

a --"

0 2
as. +n s. a

le n in en

2 = 41Te2 _._
p m.m

I e

(14d)

(14e)

We first assume a steady state exists, so all time derivatives are set

equal to zero. Then (12) and (13) become respectively

a (_9 - -nV) ÷ abJ_- Vpn = 0

n s. n _.

J = o0 (E + v x B • b' J x B + n in Vpe _ n in-- -- -p -- -- -- ea ea VPi)

(15)

(16)

which may be further rewritten as

-- VPn_J = oo (E_ + -_v x _B + (b' - b) _J x _B + al x _B
(17)

n e. n
n an n en
ea VPe ea VPi

At this point we will drop the terms

n e. n (_
1 n in n en

VPn x B ÷ ea VPe - ea VPi



only noting that they enter the equation in the same manner as _.

(17) for J gives
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Solving

a 0
J = _ (E + v x B)

-- 1 + a_B2(b'-b)20 -- -n --

_02 (b-b ')
+ B x (E + v x B)

2B2,b,_b _2_ • -- -- --n --1 +
0

(18)

This is of the form of the usual expression for current in a

partially ionized gas

° 2

J = aI (E + -nv x B) + _-- B x (E + v x B)
(19)

where the quantities in the place of conductivities are not quite the

usual Pedersen (_i) and Hall (_2) conductivities. This is partly because

our derivation has included the effect of collisions between charged

particles.

Note that there is an inconsistency in this kind of derivation. We

have dropped the pressure gradient terms and also the time derivatives.

If all these terms were zero equation (Ii) would require the transverse

current also to be zero. A similar step is made in most derivations of

the Hall and Pedersen conductivities by assuming the neutral background

immobile. Generally, the presence of a current indicates the presence of

a pressure gradient, acceleration, or other kind of force. Let us then

consider the effect of an acceleration of the neutral component (in the

absence of pressure gradients) by allowing the electric field to vary as

e i_t. In the steady state all variables will undergo similar variations

(although with different phases). Assuming this to be the case, (I0) and

(ii) may be rewritten as
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--n

av +abJ

iw Pn + a

I16

(20)

1
v - JxB
-- i_ p -- --

Inserting (20) into (12) we have

Pn a Pn
v (i--- +

"-P P p(iw Pn + a)

) = V --

abPnJ

p(i_ Pn + a)

(21)

(22)

By use of (21) and (22), both v and v
-- -p

resulting in the following equation.

may be eliminated from (18)

f 4_ a 0
oo E : £ I + -- + b.1PpPn a o

2 ie 0

_p iu pnPp + ap

I

P_ bo0(ie Pn + a) - Coa b Pn 1

(im PpPn * ap)
J

+

- (J x B) x B
c 0 (iw On + a)

i_ (iu OpO n + ap)

(23)

Assuming E is perpendicular to B

E : PJ - Q (J x B) (24)

where

I b2

4w o pp a o

p = __l 1 + i_----_ + i__p n 0

°0 _p iw pnPp + ap

(iw Pn + a) o 0

iw (i_ PpPn + ap)

Q = b' + pp b (ira Pn + a) - a b Pn

(i_ PpPn + ap)

(25)

(26)

and P and Q are complex numbers.
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In terms of the x and y components, (2W) are

P J - Q' J = E
x y x

(27a)

O' J +PJ :E
x y y

Q' = QB

(27b)

(27c)

or rewriting (27)

J : Y1 E + Y2 E% x y

= + Y1 EJy -Y2 Ex y

(28a)

(28b)

where

P

Y1 =
p2 + Q,2

Y2

(29a)

- Q' (29b)

p2 + Q,2

Here, Y1 is the generalized Pedersen conductivity and Y2 is the

generalized Hall conductivity. Since these quantities are complex

numbers, they correspond to the admittance used in a.c. circuit analyses.

The conductivities Y1 and Y2 should be reduced to oI and 02, respectively,

when the neutral particles are considered to be an immobile background.

The conductivity along the field lines can also be obtained from (23);

where

X ..

0

Jfl = YoEII (30)

I (31)

°O _ + =- iw
w i_ pnPp + ap
P
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Equation (3) indicates that the important parameters which determine

the efficiency of transmission of the electric field is (YI/Yo) (Spreiter

and Briggs, 1961). Recalling that we have assumed a periodic change (e i_t)

for the electric field, let us take the periods I0 sec, I00 sec, 6 hr, 8 hr,

12 hr and 24 hm for the calculation of the conductivities. In Figs. A1 - A3

the distribution of the generalized Pedersen conductivity Yl(esu) is shown

as a function of altitude (60 km_500 km). In general, Y1 is a complex

number, so that the absolute values of the real part (R) and the imaginary

part (I) are given separately, together with the parameter 'period'. The

imaginary part has a negative value below i00 km, but this does not have a

significant effect because R>>I. The curves R-lOS and I-lOS in Fig. A1

refer to the real and imaginary parts of Y1 for the period of i0 sec (S),

and similarly, the curves R-6H and I-6H in Fig. A2 refer to the real and

imaginary parts of Y1 for the period of 6 hour (H), respectively. In all

the figures, the distribution of c I calculated by use of the usual

expression is also included.

First of all, for short period changes (periods < 103 sec) of the

electrostatic field, the real part of Y1 is essentially the same as cI.

However, beyond i00 km the imaginary part increases rapidly with altitude.

It is not difficult to show that the imaginary part in this period range

is due to the polarization current Jp namely

_ = DE
Jp = ie pp E ( _P ) _ (32)

B2 B2 _t

This current does not exist in a steady state (8/_t = O), so that the

usual expression for a I does not contain the contribution from the

polarization current.



Fig. A The complex conductivity (admittance) of the
ionosphere in the direction of a transverse
electric field which varies sinusoidally.
The imaginary part of the conductivity arises
from the tendency of the neutral component of

gas to be accelerated by collisions with the

ionized components. Fig. A1 shows the real

(R) and imaginary (I) conductivities for

applied electric fields with i0 and I00

second periods_ Fig. A2, for 6 and 8 hour

periods and Fig. A3, for 12 and 24 hour

periods.
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Secondly, below i00 km, Y1 is essentially the same as _I for all the

periods we consider. This is because the neutral particles are so

abundant in that region that they cannot respond to the applied field,

and they essentially behave as an immobile background.

However, for a period longer than 6 hrs, the real part of Y1 becomes

less than Ul beyond 150 km in altitude. The discrepancy becomes more

serious for longer periods. For a period of 2g hrs, the real part of Y1

is more than order of magnitude less than c I.

This discrepancy can be considered to arise from the interaction

between the charged particles and the neutral particles. The usual

derivation of the conductivities assumes that the charged particles, after

an interval of acceleration by the applied electric field, undergo

collisions with neutral particles of a gas with zero mean velocity.

However, after a number of such collisions sufficient momentum would be

systematically transferred to the neutral particles to give them a signifi-

cant mean velocity, causing a change in the character of their collisions

with the charged particles. It is the last effect that produces the

discrepancy between the results given here and those previously obtained.

It can be noted that so lon E as the inertia of the neutral gas is great

enough to prevent it from responding to a given frequency of the applied

electric field, the results obtained here are not unlike those previously

obtained. If the gas can be accelerated appreciably during the time of

one cycle of the applied field, however, there is an appreciable change

in the effective conductivity.

The effect of acceleration of the neutral component of the gas is

equally well treated in terms of dynamo effect. This treatment essentially

employs a coordinate system which moves at the gas velocity, insuring that
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the usually used conductivities are appropriate. The reduction of the

generalized Pedersen conductivity can be demonstrated in this way. From

equation (ii) the mass velocity v of the whole gas is given by

v = J x B / i_p (32)

Let E be an applied electric field in the upper ionosphere. In the upper

ionosphere, the Pedersen current becomes more important than the Hall

current. Therefore, let us assume that the current equation is approxi-

mately given as follows:

o1(£ + (_.£)) :j

o_

and thus

B2

oI (_ - -- _) : _ (33)
i_o

J =I Ol1 + °12 B4
2 2

to P

°12 u_'-B2 PB-_1

+ i -- E_ (34)

1 + a12

7

If the angular frequency to is high enough, (34) can be reduced to

J -- oI E (35)

For a sufficiently low frequency change (or a sufficiently long period),

2B4(orol°l > 1 > _o

2 2
to p

(36)
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so that the real part in the bracket is less than c I and the imaginary

part is given approximately by

B 2

(37)

This situation is approximately attained above the F2 peak for periods of

order 24 hrs. For an extremely low frequency, both the real and imaginary

parts become null; this situation is given by

E + (v x B) = 0 (38)

It is important to realize that an electrostatic field transmitted

from the magnetosphere (or from the dynamo effective region of the

ionosphere) to the upper ionosphere can cause a wind of the neutral gas

there (Martyn (1954)). The fact that Y1 is significantly less than c 1

for periods of more than 6 hrs suggests that the wind attained a speed

v = v comparable to (E/B)
n

The results for Yoame much simpler than those for YI" It can easily

be shown that in the circumstance discussed above

Yo = a0 (see 14d) (39)

which is a little more general than the usual expression for Co, in that

the collisions between the positive ions and electrons are taken into

account. Note thai a can be reduced to the well known conductivity in a

fully ionized gas e2 ein ornp/me Uie' depending on whether aeie>>nn 2

2
a_ie<<nn ein een (see equation (14d)).
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APPENDIX B

CONDITIONS FOR THE EXISTENCE OF TURBULENCE AT THE LOWER

THRESHOLD OF THE DYNAMO REGION

It has been observed that turbulence exists just below the dynamo

layer, but never above a height somewhere between i00 and 105 kin. We

here wish to consider the circumstances under which such turbulence can

exist under the assumption that it is driven by a velocity shear arising

from the inability of the dynamo layer to undergo the same motion as the

upper portion of the neutrosphere. We will make the further assumption

that inertial and pressure terms are not important, so we may consider

each layer to be in dynamic equilibrium under the stress exerted on it at

its lower surface by the underlying layer, and that at its upper surface

exerted by the layer above. Under these circumstances it immediately

follows that the stress must be constant on all horizontal surfaces.

There are three means by which stress may be exerted on overlying

and underlying surfaces. The first is the usual molecular viscosity.

The second process, "eddy viscosity", is a much more efficient one,

given the existence of turbulence. Finally, there is a process which

normally does not enter into such discussions, that arising from the

Lorentz force J x B. In this form the Lorentz force is a force on each

unit volume of material rather than a stress, but it can easily be put

into the form of a stress. First, however, let us consider the nature

of the reaction to the force. Consider a single elemental layer in the

vicinity of 100 km, and divide the horizontal current in that layer into

two parts, a solenoidal part and a part which is irrotational. The

irrotational part of the horizontal current will have divergence, and

consequently in the steady state a vertical current will exist in order
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to meet the condition that the three dimensional current be divergence

free. However, since we cannot have vertical currents to great distances,

the net divergence of all other layers must be equal and opposite to that

of the elemental layer we are discussing. We may speak of the net cur-

rent of all the other layers, and this will be equal and opposite to

that of this elemental layer. Thus, we find that an equal and opposite

force is distributed in some fashion among all other layers as a reaction

to the Lorentz force associated with the irrotational current in a

particular layer. The Lorentz force associated with the solenoidal com-

ponent of current will similarly have a reaction in all other layers.

This time, however, the currents associated with the reaction force may

be considered to be induced by the perturbation of the magnetic field

produced by the current in the elemental layer under discussion. In

both cases the effect is the same. A force introduced into the layer by

some other process is transferred to other layers by electromagnetic

action. Thus, in our case, the Lorentz force in a particular layer must

be associated with a change with height in the viscous stresses.

We may write

 xZ+Tzl= o (1)

If we integrate upward from some height below that where the atmosphere

has electrical conductivity to any height z, we have

z

 xBdz+L=!o (2)

z0

where x0 is the viscous stress at heights below those at which the

Lorentz force can act. Let us begin by considering the quite simple
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case in which all the stresses are in the same direction. This would

be the case if the conductivity were expressible as a scalar and if

there were no electric field. Disregarding the turbulent component of

motion we have

J : a v x B (3)

and we may write (2) in terms of a single component of stress as

TE = TO - B2

z

cvdz-_
m

(4)

zo

where we have divided the viscous stress into an eddy viscous (TE) and a

molecular viscous (Tm) part. The eddy viscous stress can be related to

the velocity shear by the relationship

(5)

where Im is the Prandtl mixing length.

In order to sustain turbulence the kinetic energy of the flow must

do work on the atmosphere, transporting parcels of the atmosphere in

opposition to the stabilizing effects of gravity. This condition is

expressed in terms of the dimensionless Richardson number Ri

-)2
Ri : (g _z in 3)/( (6)

where g is the acceleration of gravity, e is the average potential

%emperature_ and v is the average velocity of the flow. In order for

turbulence to be sustained this number must be less than some limiting

value in the vicinity of i. The precise value of this limiting value
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is not well established, and we will here simply denote it by Rimax.

This places a condition on the magnitude of the wind shear necessary

to sustain the turbulence, namely, that

b

_v • [(g8-_ _z In 8)/Rimax] ½ (7)

Another commonly used criteria for the existence of turbulence is

the Reynolds number

R = v d p/_ (8)
e

where d a dimension characteristic of the flow, p is the mass density

and _ is the molecular viscosity of the fluid. The characteristic velocity

v must be associated with the shear (since a uniform flow can be

generated in the choice of a reference frame which can hardly be

influential in producing turbulence) allowing us to write

8v d2
Re : _z pl_ (9)

The Reynold's number may be identified with the ratio of the inertial

force p(v dv
_-_) to the viscous force. In order to have turbulence the

Reynold's number must exceed some minimum value which we will here

denote Remin. Again, this number is not well known and suggestions in

the literature for its critical value range from one to two thousand.

Nevemtheless, we will suppose some such minimum number must be exceeded

to maintain turbulence, and rewrite this condition as an inequality

_v d2 > (_I_) Remin (i0)
8z
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The d which appears in the inequality (I0) and the Prandtl mixing

length appearing in equation (5) may both be regarded as measures of the

scale of the eddies. Thus, if we multiply inequality (7) by (i0) and

substitute ! for d we obtain
m

m (a-z) > [(g _z In 8)/Rimax]_ _ Remin
(ii)

which places a lower limit on the stress which must exist in order to

sustain turbulence. But by (4) we find that this places an upper limit

on the electromagnetic and molecular viscous coupling that can take

place before turbulence is suppressed.

z

a; B 2 - a
_ + O v dz < _0 - { (g _ in 8)/Rimax}2 _ Remin (12)

z 0

It is interesting to note that the integral on the left does not

characterize any one layer, but is rather the accumulation of effects

at all levels below z, the level under discussion. Consequently, when

an altitude is reached at which this condition would deny the existence

of turbulence, the existence of turbulence would be denied at greater

heights as well, unless new stresses are introduced in some manner.

A second interesting point concerning the integral, indeed one

that demands explanation, is that it involves the velocity v rather than

a velocity shear. This implies that the reference frame in which the

flow is observed has somehow been established in the course of our

arguments. This is indeed the case, for in writing equation (3) we

assumed there is no electric field. If an electric field is present,

it is necessary to transform the problem to a coordinate system moving



130

with velocity _ = _ x BJB2 if these results are to be applied, or to

replace _ by _ - _E in the development. This requirement regarding the

choice of coordinate systems is indicative of the fact that the stress

is being applied to those layers whose electric field is influenced by

the dynamo action of other layers. We note that if _ = _ there would

be no current in the level under discussion and no transfer of force by

electromagnetic effects.

At sufficiently great heights in the ionosphere the conductivity

along the magnetic field lines is sufficiently great that they may be

regarded as eq_ipotentials and the electric field is essentially uniform

with height. We are here concerned with the threshold of the dynamo

region, so the assumption that the same electric field exists at all

heights warrants some examination. Appreciable electrical resistance

along the field lines would to some extent allow an electric polarization

to be established in a layer independent of the electric field in more

distant layers. Such a polarization would act to inhibit the current,

thus reducing the Lorentz force on the layer. Effectively, the

resistance along the field line serves to decouple the layers. Some

estimate of this decoupling action may be obtained using an argument

similar to that which was made in Chapter W, where the relative importance

of transverse currents and currents along the field lines were discussed

for the case of antisymmetric dynamo action.

Consider a surface, assumed motionless and equipotential for

simplicity, just above a region of thickness Z in which there is a more

or less uniform vertical velocity shear. Let us assume that in this

region an electrostatic field has been established by the wind's dynamo

action. We wish to know whethe_ this electrostatic field drives currents
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predominantly transverse to the magnetic field (here assumed vertically

directed), thus acting to cancel the Lorentz force on the gas, or

predominantly upward, which would amount to dynamic coupling to over-

lying layers. Consider a region of horizontal scale L which is at a

higher potential than the surrounding. We further suppose it to be

surrounded by a second region of horizontal scale 2L which is at zero

potential. From equation (1.8) of Chapter 4 we have for the resistance

between the two regions

Rdisc = in 2/(2_Zoi).
(13)

The resistance between our reference surface and the region of higher

potential is

Rtube = Z/(Oo_L2) (i_)

Thus, the current along the field lines will be greater than that

transverse to the field so long as

or

Rtube < Rdisc (15)

Z/(a0_L 2) < In 2 / (2_Zo I) (16)

Solving the inequality for Z we have

Z < in 2 (°01½--T- 011 L

In general o 0 > oI at all heights in the ionosphere. Thus, for fields

having appreciable horizontal scale (>i00 km) there seems to be little

likelihood that the resistance along the field lines would be effective

in decoupling layers in which there are dynamo driven transverse currents.



APPENDIXC

THEDIVISIONOFA HORIZONTAL IRROTATIONAL WIND INTO

CURRENT PRODUCING AND NON-CURRENT PRODUCING PARTS

In order to determine S1 and @ such that

Br _ : -Bp cos e V ¢ : -V × SII -V _ (i)

on the spherical shell r=r O we first take the divergence of both sides

of (i). This gives

V2_ : B (re . V cos e + v2¢ cos 8) (2)
P

-2 a¢
= Bp (V2¢ cos e - r sin 8 _),

a differential equation for _. Next taking the curl of both sides of

(I) one obtains

V x (V X Sll_r) = Bp ? x (cos 8 re) (3)

which may be rewritten

1 (Bp/r 2) a_¢ : 1 v2s, (_)--r a_ --r

making use of the fact that S1 and ¢ have only horizontal gradients.

is then the required differential equation for SI.

This
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